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ABSTRACT 

Magnetotelluric method is used to delineate the subsurface conductivity structure of 

earth using natural electromagnetic waves in the frequency range 10-5 Hz – 105 Hz as 

source field. These natural fields are generated mainly by thunderstorm activity (>1 Hz) 

and the interaction of solar wind with the earth’s magnetosphere (<1 Hz) (Kaufman and 

Keller, 1981). The horizontal electric and magnetic field components are measured at the 

earth’s surface and analyzed to infer electrical resistivity distribution in the earth’s interior. 

The two orthogonal horizontal electric field components are linearly related to the two 

horizontal magnetic field components through appropriate transfer function (Tikhonov, 

1950 and Cagniard, 1953). The depth of penetration of electromagnetic (EM) wave 

depends upon its frequency and conductivity distribution of medium.  

The EM fields are studied using Maxwell’s equations, coupled in electric (E) and 

magnetic field (B) vectors. These equations are transformed into vector Helmholtz equation 

for decoupled E-field or B-field. The vector Helmholtz equation is used to solve for the 

response of a given earth model. Typical model parameters are geometry of the target and 

spatial distribution of conductivity.  The estimation of model parameters from the physical 

fields, measured on earth surface, is termed as an inverse problem, while the mapping of 

model parameters to measured fields is known as a forward problem. For a good inversion 

algorithm, an efficient forward modeling code is needed. This work deals with the 

development of an efficient 3D forward modeling algorithm. 

The popular numerical modeling schemes can be broadly classified into Integral 

Equation Methods (IEM) and Differential Equation Methods (DEM) (Finite Difference 

Method (FDM), Finite Element Method (FEM)). While IEM can be efficiently used only 
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for computing the responses of confined targets buried in a layered earth, the DEMs are 

capable of modeling arbitrary complex distributions of conductivity. The coefficient matrix 

in case of IEM is full but small in size, while in case of DEM it is large but grossly sparse. 

In DEMs use of staggered grid is popular, particularly in 3D case, because its use 

analytically incorporates the divergence equation of magnetic field. FDM with staggered 

grid is used in the present study. 

Instead of using FDM to solve the complete Boundary Value Problem (BVP) with 

sources, we have first studied fundamental nature of the eigenvalue problem obtained in 

case of source free BVP. Eigenvalues and eigenvectors, collectively known as eigenmodes, 

exhibit the basic characteristics of the response to a given physical property distribution in 

the model. After estimating the eigenmodes for a given geometry and physical property 

distribution, the EM response for a given source frequency can be obtained through 

superposition of the eigenvectors. In geophysical applications, similar approach was 

implemented by Druskin et al. (1994, 1999) and Stuntebeck (2003). 

In the eigenmode method, the responses for additional frequencies can be obtained 

in negligible time. In contrast, in case of traditional use of FDM to generate multifrequency 

responses, one has to re-run the code for each frequency. During evaluation of 

superposition coefficients, the eigenvalues appear in the denominator, implying that the 

smaller eigenvalues contribute more significantly to the field. Therefore, one need compute 

only a subset of the smallest eigenvalues and corresponding eigenvectors for a given 

degree of accuracy of field values. For evaluation of this subset, the iterative methods serve 

better than the direct methods, particularly in case of 3D problems where the matrix size is 

extremely large. 
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The most widely used methods for evaluating a subset of eigenmodes are Krylov 

subspace projection methods. In these methods, only product of the matrix with a vector is 

needed and, therefore, only non-zero elements of the sparse coefficient matrix need be 

stored. Lanczos and Arnoldi methods are two popular Krylov subspace methods. Former is 

used for symmetric matrices while the latter is used for non-symmetric matrices.  

Before launching the development of 3D code, we gained experience of eigenmode 

method by developing 1D and 2D forward modeling codes. The FDM coefficient matrix is 

symmetric. In case of 3D, the symmetric coefficient matrix is of large size, which is 

reduced in size by using the current divergence equation, to eliminate the z-component of 

electric field from expressions. This step transforms the symmetric coefficient matrix to a 

nonsymmetric one, albeit of much smaller size. So, Lanczos method is used to obtain the 

eigenmodes in 1D and 2D case while Arnoldi method is used in case of 3D. The 

eigenmode evaluation subprogram of our algorithm is adapted from the routines of 

ARPACK (1997) software which is based on Implicit Restarted Lanczos/Arnoldi Method 

(IRLM/IRAM) given by Sorensen et al. (1992). ARPACK works in different modes such 

as ‘regular’, ‘shift and invert’ etc. The regular mode is efficient in obtaining largest 

magnitude eigenvalues while invert mode is efficient in obtaining smallest magnitude ones. 

Since we are interested in the smallest eigenvalues, shift and invert mode is used.  Further, 

to circumvent the problem of loss of Lanczos vector orthogonality in case of degenerate 

eigenvalues, their complete reorthogonalization has been employed. 

The development of 3D algorithm was carried out on a PC. As a result, we had to 

introduce several I/O detours and had to work under severe limitations imposed on the size 
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of the grid. Therefore, we designed several appropriate experiments using the coarse grid to 

validate the 3D algorithm. 

 The organization of seven chapters in the thesis is presented next. 

In chapter one, the literature review is presented. 

In chapter two, the theory for 3D Magnetotellurics using electric field vector 

Helmholtz equation, obtained from Maxwell’s equations, is discussed. Different types of 

boundary conditions such as domain and interface boundary conditions are described. The 

eigenmode problem is formulated and the eigenmodes are used to obtain the EM response 

for multi-frequency case. The derivations of response functions, i.e. apparent resistivity and 

phase corresponding to both 2D-TE and 2D-TM modes are discussed. 

In chapter three implementation of FDM on staggered grid is described. The 

domain is discretized into a grid comprising cuboids. We have followed the convention that 

electric field components are defined on midpoints of edges while magnetic field 

components are defined at the centers of surfaces. The derivation of matrix equation from 

the governing partial differential equation and boundary conditions is presented next. The 

coefficient matrix obtained is symmetric and about one third of its eigenvalues are zero. 

These spurious zero eigenvalues do not contribute to field synthesis. This knowledge is 

made use of in reducing the coefficient matrix size to the number of non-zero eigenvalues 

by eliminating the vertical component of electric field and working only with the horizontal 

components. This step transformed the symmetric coefficient matrix to a non-symmetric 

one. A brief review of ARPACK subprograms adapted to determine the eigenmodes is 

presented.  
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In chapter four, the details of various stages of development of algorithm, 

MT_3D_EA, are discussed. Starting with symmetric matrix eigenmode evaluation using 

Singular Value Decomposition (SVD), the Lanczos and Arnoldi methods in ‘regular’ and 

in ‘shift and invert’ modes are presented. In invert mode a matrix equation need be solved 

so efficient matrix solvers based on Conjugate Gradient Method and various 

preconditioners used are described next.  Finally, the algorithm is presented along with 

flow charts of important subprograms. 

In chapter five, the synthetic experiments designed to test and validate the 

algorithms MT_2D_EA and MT_3D_EA are discussed. First we performed different tests 

such as grid convergence and no contrast case to check the consistency and accuracy. Then, 

we compared the results of 2D version of our algorithm with published results. We studied 

two 2D models (simple and complex) taken from COMMEMI (Zhdanov et al., 1997) and 

obtained good match with the average values given in the paper. The RMS errors for 

simple and complex models are 0.01 and 0.06 respectively. Next we studied the impact on 

the field values of using different percentages of eigenmodes. We observed that for 

obtaining accurate field values, 5% eigenmodes were sufficient for the conductive block 

model whereas for the resistive block 20% eigenmodes were needed for same accuracy. In 

the multi-frequency experiment, we studied Weaver (1976) model. We used two grids for 

time periods 1s and 10s and generated the responses (true) for these grids. Next we 

generated the response at 1s using 10s eigenmodes and vice versa and found excellent fit 

with the corresponding true responses. In case of 3D, additional experiment conducted was 

to verify that 3D apparent resistivity values converge to corresponding 2D values as the 

strike length in one direction is extended. We compared our 3D response with the 
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published apparent resistivity values of the model described as 3D-2 in COMMEMI report 

and found a good fit. 

In chapter six, we have used MT_3D_EA algorithm to generate 3D models whose 

responses are commensurate with the MT field data acquired by Israil et al. (2008) in 

Garhwal Himalaya. Tyagi (2007) and Israil et al. (2008) analyzed this data using WingLink 

software, and proposed the first 2D geoelectric model. We used this model as base model 

for our study. Using MT_2D_EA algorithm, we generated responses of this model at two 

time periods and found excellent match with the corresponding WINGLINK responses. 

Due to limited computer resources, we could not run the complex model using MT_3D_EA 

algorithm. So, for 3D study we designed a simplified 3D model retaining the dominant 

feature of conducting block. We generated the 3D responses for 4 strike length values (20 

km, 50 km, 70 km and 100 km) of the conducting body. At 100 km strike length the 3D 

response of the model matches well with the 2D response. Finally, we experimented with 

the strike-length and the depth of burial of the block and generated equivalent 3D models 

that would explain the conducting anomaly in the observed data. The 3D geometry of the 

conductive block, buried under the Roorkee-Gangotri profile near MCT, can be taken as 70 

km strike, 20-26 km width and 4 km depth and its resistivity is estimated as 8 Ω-m. 

However, the detailed 3D study suggests that the conductive block can be approximated as 

a 2D one. 

In chapter seven, we have discussed the strategies for further improvement of our 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

The geoelectromagnetic method is an important branch of applied geophysics, in 

addition to seismic, gravity and magnetic etc. The cardinal objective of applied geophysics 

is to add a third dimension to geological maps. This is achieved by efficiently interpreting 

the measured anomalies using scientific instruments whose function is to detect changes in 

the physical properties of rocks concealed beneath the surface of the earth. Subsurface 

geology – the third dimension of the geological map – is unfolded somewhat obscurely 

through the pattern of anomalies observed above, on or under the air-earth interface. The 

geological picture is only vaguely adumbrated in lines of equal anomaly and the 

professional job of geophysicist is to interpret these observations in geological terms. 

The conductive rocks affect the geoelectromagnetic response to artificially or 

naturally simulated electric and magnetic fields. The artificially simulated source field 

methods are also called Controlled Source Methods that include Controlled Source EM 

Method, Direct Current Resistivity Method and Induced Polarization Methods. In contrast, 

the naturally simulated methods are Magnetotelluric, Telluric, Geomagnetic Depth 

Sounding and Self Potential methods. 

The Magnetotelluric method uses natural electromagnetic waves in the frequency 

range 10-5 Hz – 105 Hz as source field. These fields are generated mainly by thunderstorm 

activity (>1 Hz) and the interaction of solar wind with the earth’s magnetosphere (<1 Hz) 

(Kaufman and Keller, 1981). The orthogonal horizontal components of electric and 

magnetic fields are measured at the earth’s surface and analyzed in terms of electrical 

resistivity distribution in the earth’s interior. The two orthogonal horizontal electric field 
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components are linearly related to the two horizontal magnetic field components through 

an appropriate transfer function (Tikhonov, 1950; Cagniard, 1953). The depth of 

penetration of electromagnetic (EM) wave depends upon its frequency and conductivity 

distribution of the medium. 

1.1 Applications of Electromagnetic Methods 

Electromagnetic methods can be used in two forms as Controlled source EM 

(CSEM) and natural source EM (MT). In CSEM applications an active source is used while 

in magnetotelluric method, naturally generated EM waves are used. MT is primarily used 

to delineate the crustal structure of the earth as in MT we can get information upto several 

hundreds of kilometers. Now a days, MT along with CSEM is also used in marine 

environment to detect hydrocarbons. MT is also used in geothermal exploration, ground 

water exploration (Petrick, 2005; Rao, 2008) and detection of waste hazards sites (Lima et 

al., 1995; Tezkan, 2000). A brief literature review of salient EM field case studies where 

3D modeling algorithms have been successfully employed follows. 

1.1.1 Crustal studies 

Magnetotellurics is widely used to determine the depth of crust in different regions 

of the world. Most of the current field data interpretation exercises are carried out using 

2D/3D modeling algorithms. Adam (1997) studied Neocene Pannonian Basin and observed 

deep Bakes Graben at 7 kms. Above this structure a strong magnetotelluric (MT) phase 

anisotropy (phase-deviation in two orthogonal directions) has been observed indicating 

upwelling of the partially molten asthenosphere validating deep mantle structure. Wei et al. 

(2001) detected wide spread presence of high conductivity fluid at a depth 15-20 km in 
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southern Tibet and at a depth of 30-40 km in the northern Tibet. Unsworth et al. (2005) 

also observed crustal melting in Himalayas from northern Tibet side. Pous et al. (2007) 

observed conductive feature in Pyrenees related to the subduction of the Iberian plate 

beneath Europe. In central Taiwan, Chen et al. (2007) observed a low resistive zone 

representing reduced viscosity zone that controls deformation of this active oregen. Tezken 

(1994) also observed a highly conductive layer in the upper mantle beneath the Black forest 

crystalline. Mauro et al. (1999) carried out MT investigations in seismically active region 

of northwest Bohemia and observed a conductive structure at a depth range from 0.5 km to 

3 km related to paliofluids in the gigantic massif. Rao et al. (2003) used EM technique to 

study seismically active peninsular Indian region. Semenov et al. (2008) conducted the 

project CEMES along the south–west margin of the east European Craton using long 

period MT and their results indicate systematic trends in the deep electrical structure of the 

two European tectonic plates. Tyagi (2007) and Israil et al. (2008) studied the Garhwal 

Himalaya and observed a conductive feature near MCT. 

1.1.2 Geothermal studies 

Geothermal studies using MT were started in 80’s (Hoover et al., 1978; Wright et 

al., 1985; Pellerin et al., 1996).  In Jammu and Kashmir 1D geothermal study was done by 

Harinarayana (2002). In Punga valley, Ladakh, India, the 2D geothermal MT investigations 

were done by Abdul Azeez and Harinarayana (2007). They reported a ~ 400 m extent 

conductive zone of 10-30 Ω-m resistivity at 2 km depth and related it to a hot spring, In 

Kos island, Greece, Lagios et al. (1998) reported a 3.5-7 Ω-m conductor at 250-3000 m 

depth. Patricia et al. (2002) performed geothermal investigations in Brazil. 3D 

Magnetotellurics was used for geothermal exploration by Asaue et al. (2006) and they 
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found 1 km to 3 km conducting pillar at the hot spring site in the West Side Mt. Aso, Japan. 

Lee et al. (2007) studied in Pohang, Korea and observed a conductor at 3 km and also 

confirmed five layers resistivities with drilling results. 

1.1.3 Marine EM studies 

Marine Magnetotellurics (MMT) is mainly used as a complement to MCSEM 

(Marine Controlled Source Electromagnetic) to provide the background resistivity of the 

sub-bottom sediments, that is, to constrain the inversions (resistivity vs. depth models) 

produced from MCSEM data. First sea floor MT study was reported by Cox et al. (1980). 

The recent developments in instrumentation for Marine MT were presented by Constable et 

al. (1998). MCSEM is also used for studies of oceanic lithosphere (Cox, 1981; Constable 

and Cox, 1996), Midocean ridges (MacGreger et al., 2001) and sea floor gas hydrate (Yuan 

and Edwards, 2000). Recently, marine controlled source electromagnetic has shown great 

potential in hydrocarbon exploration to detect thin resistive layers at depth below the sea 

floor (MacGreger and Sinha, 2000; Ellingsurd et al., 2002; Eidsmo et al., 2002; Kong et al., 

2002, Johansen et al., 2005; Constable and Weiss, 2006; Constable and Srnka, 2007; Fox 

and Ingerov, 2007; Weidelt, 2008; Weitemeyer, 2008).  

1.2 Interpretation of EM Data 

The whole operation of deducing a picture of the geology at depth from geophysical 

measurements is termed as interpretation, a word which aptly implies its indeterminate 

nature. The measurement of magnetotelluric anomaly is generally taken at the ground 

surface and from these data one tries to outline the disturbing regions. This part of work is 

closely controlled by well established physical and mathematical laws and is known as 
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quantitative interpretation (Figures 1.1(a) and 1.1(b)). Although the quantitative 

interpretation may often be ambiguous, the nature of ambiguity is well understood. The 

next step is termed as geological interpretation, the step to translate the quantitative 

interpretation into reasonable geological picture and the success in the endeavor depends 

upon a proper appreciation and balancing of all the physical and geological factors. 

The subject matter of this thesis is very largely concerned with the quantitative 

interpretation of geoelectromagnetic data. The quantitative interpretation with confidence 

level is synonymous with the solution of inverse problem. However, to obtain a solution of 

inverse problem the solution of the forward problem is prerequisite. Therefore, the 

quantitative interpretation is explained as a cascade of solution of forward problem as well 

as the solution of inverse problem. 

 

 

 

 

 

 

 

Figure 1.1: (a) Block diagram of interpretation, 
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Figure 1.1continued:  (b) extended block diagram of interpretation. 

 

The mapping of model to measurable field response is known as forward problem. 

Typical parameters defining the model are the geometrical distribution and magnitude of 

the physical properties of target. The difference between the observed field values and the 

computed response values, obtained by forward modeling, is minimized in some optimal 

sense iteratively to obtain a reliable model. Functional diagram for forward modeling and 

inversion (Figure 1.2(a), 1.2(b)) is given below; 

 

 
 
 

 
 

 

 

 

 

Figure 1.2: Functional diagram (a) forward modeling, (b) inverse modeling. 
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As described above, forward modeling is an essential part of inversion. Using trial 

and error method, forward modeling itself can be used to find the solution for given field 

data. The present work deals with the development of forward modeling algorithm for 

Magnetotelluric problem. Logical flow diagram of forward problem can be sketched as 

given below in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Logic diagram for numerical solution of forward problem. 
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EM fields are studied using Maxwell’s equations, coupled in electric (E) and 

magnetic field (B). These equations are transformed into vector Helmholtz equation for E-

field and/or B-field. The vector Helmholtz equation is used to solve the response for a 

given model.  

The first set of modeling problems attempted pertained to a uniform conductivity 

half space or the conductivity variation in a layered earth. The half space problems were 

solved by Sommerfield (1909, 1926), Price (1962), Weaver (1971a, 1971b). Later, some 

characteristics of EM waves as reflection and wave tilt were studied by Singh and Lal 

(1980 a, 1980b) over a half space. To estimate the conductivity in a layered earth, people 

solved one-dimensional problems. Several one-dimensional, conductivity variation in 

vertical direction, algorithms were presented by Srivastava et al. (1963), Vozoff et al. 

(1963), Backus and Gilbert (1970), Parker (1977), Dmitriev and Berdichevsky (1979), 

Oldenburg (1979), Weidelt (1995) and Gupta et al. (1996). 

After 1D problems, the next set of problems pertained to 2D models, in which 

conductivity varies only in one horizontal direction and in the vertical direction. Jones and 

Pascoe (1971) and Coggon (1971) presented the first two-dimensional algorithms for MT 

response computation. Other two-dimension algorithms were given by Brewitt-Taylor and 

Weaver (1976), Pek (1985), Oldenburg (1993), Weaver (1994), Rastogi et al. (1997), de 

Groot hedlin et al. (1990, 2004) and Pedersen et al. (2005).  

The physical properties vary in all three directions i.e. both the horizontal directions 

and the vertical direction. The most appropriate model to obtain the exact fit of its response 

to data is three-dimensional. Thus, to obtain a good model from data, efficient 3D forward 

modeling is the need of time as emphasized by Park and Torres-Verdin (1988) “3-D 
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modeling simply can not be avoided in complex geological environment”. Keeping this in 

mind, we undertook the task of developing an efficient algorithm for 3D modeling of the 

Magnetotellurics response. 

The analytical solution for computation of responses is possible only for the simple 

resistivity variation models, where the geometry of the modeling domain and of the 

interfaces demarcating regions of different resistivity can be represented by a simple 

expression that eases the implementation of necessary boundary conditions, e.g. the layered 

earth one-dimensional problem can be solved analytically. To compute the response of 

arbitrary resistivity variation models only way out is to undertake numerical 3D modeling. 

A brief review of literature on 3D MT modeling is given next. 

1.3 Numerical Modeling 

The workers who initiated the study for 3D MT response simulation are Jones and 

Pascoe (1972), Raiche (1974), Weidelt, (1975), Hohmann (1975, 1983), Hohmann and 

Ting (1978), Reddy et al. (1977), Jones and Vozoff (1978).  

Initially, electromagnetic methods were used in mining industry where one seeks 

confined conductive bodies in a half space or layered structure. To compute the response of 

such confined targets, the Integral Equation Methods (IEM) were used. In eighties, the 3D 

algorithms were based on body in a layered earth (Das and Verma, 1981, 1982; Ting and 

Hohman, 1981; Tabbagh, 1985; Wannamaker et al., 1984a; Wannamaker et al., 1984b; 

Wannamaker, 1991; Xiong et al., 1986; Xiong 1992).  

IEMs can efficiently compute the responses of confined targets. However, for 

general conductivity structure, the Differential Equation Methods (DEM) are preferred. In 

IEM only the target is discretised, resulting in a small but full coefficient matrix, while in 
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DEM the whole domain is discretised, resulting in a large but highly sparse coefficient 

matrix. There are two classes of DEM’s: Finite Element Method (FEM) and Finite 

Difference Method (FDM). Because of the efficient handling of curved boundaries, for 

sometime the FEM became popular in geophysical literature after IEM, however, since 

nineties FDM has become the most favored choice  

In FEM, the matrix equations are derived using one of the several approaches, 

popular one being use of either the weighted residual approach or the minimum theorem.  

Both tetrahedral and hexahedral elements have been used for the modeling. Pridmore et al. 

(1981) suggested that only hexahedral elements can give satisfactory results. Livelybrooks 

(1993) developed 3Dfeem (3D finite element electromagnetic modeling) algorithm and 

compared its results with 2D analytical solution. Xu et al. (1997) applied FEM to 

implement Terrain corrections to MT problems. Shi et al. (2004) applied divergence 

correction in their solution and observed that their algorithm is comparable with IEM in 

computational speed. Now a days, people are using staggered grid to find accurate solution 

(Mitsuhata and Uchida, 2004; Naam et al., 2007; Changsheng et al., 2008; Blome et al., 

2009). 

Staggered grid was first introduced by Yee (1966) in his FDM algorithm developed 

to solve electrical engineering problems. Later, it became popular in geophysics also. Now, 

this approach is used in almost all algorithms due to implicit application of magnetic field 

divergence correction. Monk and Suli (1994) observed that this scheme is also second 

order convergent on a non-uniform mesh as it is on a uniform mesh. 

Now one can handle curved boundaries even with FDM and it is easier to 

implement than with FEM. The first 3D FDM code for electromagnetic problems in 
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geophysics was given by Jones and Pascoe (1972) for general conductivity structure buried 

in a layered earth. Brewitt-Taylor and Weaver (1976) not only used central difference but 

also modified to weighted average the simple average conductivities that were used in the 

code of Jones and Pascoe (1972) and Farquharson and Oldenburg (2002) used harmonic 

average of conductivities. For E-polarization, asymptotic boundary condition was 

introduced by Weaver and Brewitt-Taylor (1978) to improve accuracy. The 3D FDM code 

given by Madden and Mackie (1989) used relaxation procedure as matrix solver rather than 

the direct methods because although direct methods are quick for 1D and 2D yet these 

become inordinately inefficient for 3D problems. Smith et al. (1990) used Taylor series 

expansion and his results agree with the Jones and Pascoe (1972). Mackie et al. (1993) 

used impedance propagator algorithm to solve 3D MT response. Their solution converges 

slowly as frequency approaches zero. Other programs were reported by Newman and 

Alumbaugh (1997), Chen et al. (1998) for topographic responses. Siripunvaraporn et al. 

(2002) formulated the problem for electric field and magnetic field. They observed that 

electric filed formulation is less sensitive to grid resolution than the magnetic field 

formulation. For sufficiently fine grid, both electric and magnetic field formulations gave 

the same solution. However, for coarser grid, the electric field solution tends to be closer to 

the exact solutions. We have also used Finite Difference Method with a staggered grid. 

Hybrid methods, amalgamation of DEM and IEM, were developed by Lee et al. 

(1981), Gupta et al. (1987) and Cerv et al. (1990). Discrete convolution method was used 

by Porsani and Ulrych (1989). 

In numerical methods, ultimately a matrix equation is obtained which need be 

solved using either a direct or an iterative matrix solver. Direct solvers give satisfactory 
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results in 1D or 2D environment but for 3D environment iterative solvers serve better 

because of the large matrix size and its sparse nature.  

Of the various classes of iterative methods, those based on Conjugate Gradient 

(CG) methods have become the popular choice.  There are different variants of CG type 

methods such as simple Conjugate Gradient (CG), Bi Conjugate Gradient (BiCG) and Bi-

Conjugate Gradient Stabilized (BiCGSTAB). Generally, CG is used to solve symmetric 

coefficient matrix problems while BiCG and BiCGSTAB are used to solve non-symmetric 

coefficient matrix problems.  

Now several workers are using CG methods in 3D modeling.  The 3D algorithm 

given by Smith (1996a, 1996b) is based on BiCG (Bi-Conjugate Gradient) method with 

Cholesky decomposition preconditioner. Xiong (1999) indicates BiCGSTAB (Bi-

Conjugate Gradient Stabilizer) offers best convergence for the solution. Other efficient 

algorithms based on BiCG solver were proposed by Sasaki (2001), Xiong et al. (2000), 

Fomenko and Mogi (2002), Farquharson and Oldenburg (2002). 

In all these traditional methods, one has to re-run the code for each frequency. 

While in the approach, based on eigenvalues and eigenvectors, there is no need to re-run 

the algorithm for each frequency. Eigenvalues and eigenvectors, collectively known as 

eigenmodes, represent the basic characteristics of the matrix and, in turn, of the model. 

After estimating the eigenmodes for given geometry and physical property distribution, the 

solution for multi-frequencies can be obtained using these eigenmodes within seconds. 

Since eigenvalues have the basic characteristics of the physical properties irrespective of 

source, we used this approach. 
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The popular method to find the eigenmodes is Singular Value Decomposition (SVD). In 

SVD, eigenvalues and eigenvectors (eigenmodes) are used to obtain the solution. Park and 

Chave (1984) used SVD to estimate magnetotelluric response functions. In SVD the matrix 

is needed explicitly and it is very difficult to store the matrix in 3D problems. Hence, the 

iterative methods are widely used to solve for the eigenmodes. The classic iterative method 

to find eigenvalue is power method. In addition to its role as an algorithm, the method 

played a key role in the development, understanding, and convergence analysis of all of the 

iterative methods. This method was used to find the largest eigenvalue of the system 

matrix. Krylov subspace projection methods are based upon the intricate structure of the 

sequence of vectors naturally produced by the power method.  Since we have used Krylov 

space based method to obtain the eigenmodes, a brief survey of the literature on this topic 

is given below. 

1.4 Krylov Methods 

Krylov methods are generalization of Conjugate Gradient methods. In these 

methods, the coefficient matrix is not needed explicitly, rather, an algorithm yielding 

product of the coefficient matrix with a vector is sufficient. Saad (1980) used Krylov 

method to find the eigenvalues of unsymmetric matrices. Krylov methods are particularly 

efficient when all eigenmodes are not desired, rather only a few, either largest or smallest, 

eigenvalues and corresponding eigenvectors are needed. The set of eigenvectors 

determined constitutes the basis of Krylov subspace. The constructed approximate 

eigenpairs from this subspace are known as Ritz vector with corresponding Ritz value.  

This method was implemented by Druskin et al. (1994, 1999) in geophysical 

applications with the name Spectral Lanczos Decomposition Method (SLDM). Recently, 
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Stuntebeck (2003) used eigenmode method in air-borne applications of EM methods. To 

find the eigenmodes, there are several variants of Krylov subspace method such as Jacobi-

Davidson, Lanczos and Arnoldi. We have used Lanczos and Arnoldi because of their easy 

implementation. 

1.4.1 Lanczos/Arnoldi methods 

 The Lanczos and Arnoldi algorithms are iterative algorithms invented by Cornelius 

Lanczos (1950) and W. E. Arnoldi (1951) respectively. Both are adaptations of power 

method to find eigenvalues and eigenvectors of a square matrix or the singular value 

decomposition of a rectangular matrix. In Lanczos one deals only with (Hermitian) 

symmetric matrices; while in Arnoldi method one finds the eigenvalues and eigenvectors of 

general (possibly non-Hermitian) non-symmetric matrices. After Lanczos (1950), main 

work on these methods was done by Paige (1970). He solved several extreme eigenvalues 

and eigenvectors of large symmetric matrices. His work strengthened significantly the 

Lanczos type methods. Band Lanzos methods were tested by Ruhe (1979), Ericsson and 

Ruhe (1980) to improve the computation cost.  

In all these variants, the Krylov vectors are stored column-wise in a two-

dimensional array. In exact arithmetic, these columns form an orthonormal basis for the 

Krylov subspace. These columns are referred to as the Lanczos vectors or Arnoldi vectors 

respectively. However, in finite precision arithmetic, care must be taken to ensure that the 

computed vectors are orthogonal within working precision. This operation gives rise to a 

tridiagonal matrix for symmetric cases and upper Heisenberg for nonsymmetric cases, from 

which the eigenvalues or Ritz values are estimated. 
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To find out the desired subset (either largest or smallest) of eigenvalues and 

corresponding eigenvectors restarting techniques were introduced. Using these techniques, 

the desired eigenvalues were obtained using a very small number of Krylov vectors in 

comparison to the dimension of the matrix. There were two ways of restarting, explicit and 

implicit restarting.  

The explicit restarting technique for non-symmetric system of equations was 

proposed by Saad (1984). It was based upon the polynomial acceleration scheme developed 

by Manteuffel (1978) for the iterative solution of linear systems. In this approach, starting 

vector is preconditioned so that it nearly lies in the invariant subspace of interest. This 

preconditioning takes the form of a polynomial applied to the starting vector to damp the 

unwanted components from the eigenvector expansion. Parlett and Scott (1979) observed 

slow convergence of Lanczos for Tchebychev distribution for diagonal matrices. Duff 

(1991) tried to solve the rightmost or left most eigenvalues of a real non-symmetric matrix 

by using subspace iteration method with Chebychev acceleration. Meerbergen (2000) 

developed a program based on explicit restarting named as ‘EA16’ in FORTRAN having 

capabilities of ARPACK (1995). Tong et al. (1999) analyzed BiCG in finite precision 

arithmetic and observed that loss of biorthogonality does not necessary deter convergence 

of the residuals provided the polynomial acceleration factor is bounded. Emad et al. (2005) 

developed an algorithm named Multiple Explicitly Restarted Arnoldi Method (MERAM) 

and compared it with the Explicitly Restarted Arnoldi Method (ERAM) to discover 

acceleration in convergence. For multiple eigenvalues, harmonic restarted Arnoldi 

algorithm was proposed by Morgan et al. (2006) and their method avoids the need of block 

methods but it needs explicit restart. Hernandz et al. (2007) studied the impact of re-
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orthogonalization in finite precision arithmetic in explicitly restarted Lanczos in terms of 

parallel efficiency. 

Another approach to restarting, that offers a more efficient and numerically stable 

formulation, is known as implicit restarting. In this approach truncated form of implicitly 

shifted QR iteration is used. In their landmark paper Sorensen et al. (1992) discussed 

Arnoldi process using implicitly shifted QR iteration. They also studied loss of 

orthogonality of eigenvectors and storage requirement and used exact shifts to update the 

starting vector. Calvetti (1994) used Leja points to update the starting vector. However, 

Baglama et al. (1998) find Leja points quite time consuming for large problems and they 

modified it to Fast Leja points for faster computation. Subspace iteration methods were 

used by some workers such as Meerbergen et al. (1994), Brizenski (2001), Hochstenbach 

(2003) and Beattie (2005). The work of Lehoucq et al. (1996) on QR algorithms revealed 

that these are the best choice for Schur decomposition of the matrix. They studied truncated 

QR algorithm and observed that it is a generalization of Rayleigh-Ritz procedure on a 

block krylov subspace for a non-Hermitian matrix and showed that it may be viewed as 

truncated form of implicitly QR algorithm. Based on these works of Sorenson, Lehoucq 

and others, a public domain code ARPACK was presented in FORTRAN to aid 

development of complex professional softwares. Sorensen et al. (1995) described the 

details of implementation of Implicitly Restarted Arnoldi Method (IRAM) in the ARPACK 

user’s guide (1996). Lehoucq et al. (1996) introduced the deflation procedure to improve 

convergence of IRAM. Scott et al. (1997) and Morgan et al. (1996) observed that Arnoldi 

method is more efficient than the subspace iteration method. Beattie et al. (2005) describe 

exact shifts as best in implementation and Hetmanuik et al. (2006) showed that shift and 
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invert method in Lanczos gave best result for determination of few eigenvalues as well as 

eigenvectors. Tremblay et al. (2007) proposed unsymmetric Lanczos algorithm with 

modification to resonance lifetimes and suggests how there is no need of storage of large 

number of vectors. Joubert (1992) observed the phenomenon of breakdown and loss of 

orthogonality of eigenvectors in a nonsymmetric system. Several workers have developed 

strategies to overcome this loss of orthogonality. Firstly, DGKS (1976) method was given 

to improve the orthogonality of eigenvectors. Problems related to orthogonalization are 

also discussed in Cullum and Willoughby (1985). A good work was done by Langou 

(2003) in his Ph. D. thesis. He suggests two improvements in classical Grahm-Schmidtt 

procedure (a) modified Grahm-Schmidt generates well-conditioned set of eigenvectors, (b) 

Grahm-Schmidt algorithm iterated twice gives an orthogonal set of vectors. Giraud et al. 

(2003) also suggested selective reorthogonalization to compute orthogonal set of vectors.  

1.5 About the Present Work 

The objective of study is fulfilled with the development of softwares MT_2D_EA 

(Magnetotelluric 2D Eigenmodes Algorithm) and MT_3D_EA (Magnetotelluric 3D 

Eigenmodes Algorithm) which are capable of generating MT responses for arbitrarily 

distributed 3D electrical conductivity models. The thesis writeup has been organized into 

seven chapters briefly summarized below. 

 In the present chapter 1, literature review is presented.  

 In chapter 2, the basic theory for 3D Magnetotellurics is discussed. Theoretical 

development of eigenmodes determination and application of eigenmodes for multi-

frequency response computations is described. Various types of boundary conditions 
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employed are discussed. The apparent resistivity computations are presented for both the 

modes, one corresponding to 2D TE and the other corresponding to 2D TM. 

 In chapter 3, Finite Difference implementation on 3D staggered grid is presented. It 

is discussed how the electric and magnetic fields are arranged on staggered grid. The 

structure of the coefficient matrix, in various cases, is described and corresponding 

implementation of Lanczos and Arnoldi Methods for evaluation of eigenmodes is 

presented. Application of preconditioner with conjugate gradient methods is also discussed.  

 In chapter 4, several stages of development of the algorithms MT_2D_EA and 

MT_3D_EA are discussed, starting from all eigenmode solution using SVD to Lanczos for 

symmetric matrix and Arnoldi method for non-symmetric matrix.  

In chapter 5, testing of the algorithms MT_2D_EA and MT_3D_EA are described. 

It includes tests like (i) Response of electrically same models, (ii) Effect of different 

percentage of eigenmodes on resistive and conductive bodies, (iii) Effect of coarseness of 

grid on the solution, (iv) Multi-frequency response computation and (v) Comparison with 

some published results. 

In chapter 6, we applied our algorithm to field data. The data was acquired from 

Roorkee to Gangotri in Garhwal Himalaya by our department and a robust 2D inverted 

model, obtained using WingLink, was proposed by Tyagi (2007). Using our 2D algorithm, 

first we obtained the response of the proposed complex model and found excellent match. 

Next we designed a simple 3D model from the complex 2D model and computed its 

responses for large strike length at two periods and found good fit with data. Due to limited 

computer resources in 3D we could not run the complex version of 3D models so we 

compared responses at large period and found acceptable match with data. 
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In chapter 7, we discuss further improvement steps that need be taken to make the 

algorithm more accurate, efficient and versatile. 

Finally, the Appendix A1 presents the integral boundary condition formulation. The 

generation of matrix coefficients for ex, ey and ez components and sigma orthogonality of 

eigenvectors are presented in Appendix A2. In Appendix A3, the tables of algorithm 

parameters for control and grid and various subprograms along with their purpose are 

described. Sample input and output files are presented in Appendix A4. 
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CHAPTER 2 

THEORY OF MAGNETOTELLURIC METHOD 

2.1 Introduction 

The Magnetotelluric (MT) method deals with the observation and analysis of 

natural electromagnetic (EM) fields with a goal to derive pertinent information about the 

geoelectric structure of the subsurface. The observed field can be calculated as total field or 

it can be viewed as a superposition of the primary and secondary fields. Primary fields are 

generated by an external source, while the secondary fields are generated by the induced 

secondary currents in the earth. If the Earth model is a uniform half space, then the induced 

currents and the resulting secondary fields follow a regular pattern. Inhomogenities present 

in the real earth invariably disturb this regular pattern of secondary currents and of the 

secondary fields leading to perturbation of the total EM fields. These perturbed fields, 

measured on the earth surface, provide an insight into the resistivity distribution within the 

earth. This provides information about the structure of the earth and also helps in 

understanding the ongoing physical processes. 

 The mechanism of perturbed fields can be understood only when the capability of 

generating responses of arbitrary resistivity distributions is fully developed. The 

computation of EM response of a given earth model, with prescribed resistivities, is known 

as the forward problem of EM induction. 

 An exhaustive knowledge of EM theory, based on the fundamental Maxwell’s 

equations, is essential for solving the forward problem. In literature there exists a vast pool 

of texts on EM theory differing in their emphasis on mathematical background, 
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computational aspects and applications. One can refer to Stratton(1941), Smythe (1950), 

Morse and Feshbach (1953), Jackson (1975), Born and Wolf (2005, 7th edition) for 

fundamentals, to Mitra (1973, 1975), Morgan (1990), Zhou (1993) and Taflove (1995) for 

computational aspects and to Grant and West (1965), Rikitake (1966), Ward (1967), 

Prostendorfer (1975), Rokityansky (1982), Wait (1982), Kaufman and Keller (1981), 

Berdichevsky and Zhdanov (1984), Nabighian (1988, 1991) and Zhdanov (2009) for 

geophysical applications. A brief description of EM theory is presented here. 

2.2 Electromagnetic Theory 

 The EM phenomenon is governed by Gauss law for electrostatics, Gauss law for 

magnetostatics (i.e. non existence of monopoles), Faraday’s law of induction and Ampere’s 

law for magnetic induction. Maxwell’s equations, are the mathematical forms of these laws 

and are given below for a source free case, 

 fq=⋅∇ D ,          (2.1)    

 0=⋅∇ B ,         (2.2) 

 
t∂

∂
−=×∇

BE ,         (2.3) 

 
t∂

∂
+=×∇

DJB µµ ,        (2.4) 

where,
z

k
y

j
x

i
∂
∂

+
∂
∂

+
∂
∂

=∇ ˆˆˆ . 

Here, D is dielectric displacement vector in coulomb/meter2 (C/m2), B is magnetic 

induction vector in tesla (T), E is the electric field intensity vector in volt/meter (V/m) and 

J is the electric current density vector in ampere/meter2 (A/m2). fq  is the free electric 
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charge density in coloumb/meter3 (C/m3) and µ  is the magnetic permeability in 

henry/meter (H/m). 

Equations (2.1) and (2.4) lead to the equation of continuity 

0=
∂

∂
+⋅∇

t
q fJ .        (2.5) 

Equations (2.3) and (2.4) involve five vectors, making it an underdetermined 

system. To make the system of vector equations deterministic, the following constitutive 

relations are employed,  

 EJ σ= ,         (2.6) 

 ED ε= ,         (2.7) 

and 

 BH
µ
1

= .         (2.8) 

Here, σ is the electrical conductivity in siemens/meter (S/m) andε  is the medium 

dielectric permittivity in farad/meter (F/m). H is the magnetic field intensity vector in 

ampere/meter (A/m). Equation (2.6) may be recognized as Ohm’s law. The µ andε  can be 

respectively expressed as 

0µµµ r=  

and 

 0εεε r= . 

Here rµ  is the relative permeability and rε  is relative electrical permittivity. Since 

the primary physical property of interest in magnetotellurics is conductivity σ, the 
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magnetic permeability and dielectric permittivity of the medium are assumed to be equal to 

corresponding free space values 0µ  and 0ε , as; 

    7
0 104 −×= πµ  H/m  

and 

    πε 36/10 9
0

−=  F/m. 

2.3 About Origin of MT Source 

 The magnetotelluric method is a passive electromagnetic technique that involves 

measuring fluctuations in the natural electric and magnetic field at the surface of the earth. 

The primary source field has its origin in the electric currents blowing in and beyond the 

ionosphere which, in turn, arise from the complex interactions of solar radiations and 

plasma flux with the earth’s magnetosphere and ionosphere. The external inducing field 

due to source, is horizontal and laterally uniform and therefore the signals can be treated as 

a plane wave incident normally on the earth. The domain of study can be treated as source 

free and the effect of source is accounted through the boundary conditions. The respective 

boundary conditions for solving E or B are presented in section 2.4. 

The magnetotelluric analysis is carried out in frequency domain. Taking time 

dependence to be exp(iωt), i.e. )exp(~ tiω⋅(r)e equations (2.3) and (2.4) become 

 be ~~ ωi−=×∇ ,         (2.9) 

 djb ~~~ ωµµ i+=×∇ ,        (2.10) 

where ω is the angular frequency (hertz). 

It can be easily established that when b and d having continuous first and second 

order derivatives, equation (2.1) can be derived from equations (2.5) and (2.10) while 
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equation (2.2) can be derived from equation (2.9). The equation of continuity can be recast 

in frequency domain as 

 eqiω−=⋅∇ j~ .        (2.11) 

2.4 Boundary Value Problem 

The geomagnetic field variations can be studied by solving Maxwell’s equations 

(2.9) and (2.10). The solution can be achieved in terms of field vectors ẽ or b, by 

transforming these two equations into a well posed EM boundary value problem. For this, 

Cartesian coordinate system is being used. The plane z = 0 is considered as air-earth 

interface and z is taken to be +ve downward into the earth. Along with assumption of plane 

wave propagating vertically downward, few more assumptions, given below, are made 

about physical nature of earth, 

 1) Earth is considered to be source free and a passive medium, 

 2) Since the frequencies used are less than 105 Hz and the resistivities 

commonly encountered in earth are less than 104
 Ω-m, the free charge 

decays almost instantaneously.  

Therefore, equations (2.1) and (2.11) can be simplified as  

 0~ =⋅∇ d ,         (2.12) 

 0~
=⋅∇ j .         (2.13) 

Equations (2.12) and (2.13) imply that for an isotropic medium the decay of charge is faster 

than the propagation of EM wave and that the charge density will reach equilibrium in 

negligible time. The surface charge may accumulate at the interface of two homogeneous 

regions. 
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 Since the frequencies employed are less than 105 Hz (Ward and Hohmann, 

1988), the displacement current term is negligible in comparison to the conduction current 

term and therefore can be neglected. Using ohm’s law the equation (2.10) becomes, 

 eb ~~
0σµ=×∇         (2.14) 

and equation (2.9) remains unchanged, 

 be ~~ ωi−=×∇ .        (2.15) 

The complete statement of boundary value problem requires statement of the requisite 

boundary conditions on electric field vector (ẽ) or magnetic field vector (b). 

There are two types of boundary conditions first one, termed as ‘Interface Boundary 

Condition’, is at the interface where conductivity discontinuity occurs within the domain of 

study and the second one, known as ‘Domain Boundary Condition’, at the domain 

boundary. 

2.4.1 Interface boundary conditions 

It is imposed on an interface, separating two media, of different physical properties. 

This is used to derive smooth resistivity function at the interface of different properties. 

This may be obtained by simply replacing the operator ∇  by the unit normal vector n and 

setting the time derivative or else iω term to zero in the Maxwell’s equation as, 

i) the normal components of d are discontinuous and it is equal to the 

surface free charge density fq , 

fqn =−⋅ )~~( 12 dd  .      (2.16) 

ii) the normal component of b are continuous, 

  0)~~( =−⋅ 12 bbn .      (2.17) 
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iii) the tangential components of ẽ are continuous, 

  0)~~( =−× 12 een .      (2.18) 

iv) the tangential components of h are discontinuous and it is equal to the 

surface current density, 

 jhh 12
~)~~( =−×n .      (2.19) 

 

 

 

 

 

 

 

 

 

Figure 2.1: Presentation of interface boundary condition. 

 

2.4.2 Domain boundary conditions 

 These are imposed on the bounding surfaces of the domain. One can impose either 

Drichilet or Neumann or mixed boundary conditions (BCs). Dirichlet BC means that the 

EM field variable values are known at the boundary, while Neumann BC means that the 

normal derivative of fields is known at the boundary. The mixed BC means that a linear 

superposition of the field variable and its normal derivative is known.   

2σ  

1σ  

n 

X 

Y 
Z 
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 We would apply mixed boundary conditions, as used by Weaver (1994), at the four 

vertical side surfaces of the solution domain. The bottom boundary surface is assumed to 

be underlain by a perfectly conducting halfspace. Finally, at the top surface an integral 

boundary condition (Appendix A1) that transfers the effect of air halfspace to the air-earth 

interface, is imposed. 

2.5 Eigenmode Formulation of EM Problem 

 Since in magnetotellurics, there is no active source term within the domain of study, 

we consider the effect of external sources in terms of boundary conditions imposed on the 

air-earth interface. After imposing all the domain boundary conditions, let the known right 

hand side vector term be represented as the vector 0s . Under the assumption of negligible 

displacement current, after eliminating B field in equation (2.3) and using equations (2.4) 

and (2.6), the MT equation in time domain can be written as,  

   0sEE =
∂

∂
+×∇×∇

t
trtr ),(),( 0σµ .      (2.20) 

The corresponding homogeneous equation will then be 

0),(),( 0 =
∂

∂
+×∇×∇

t
trtr EE σµ .      (2.21) 

Now, for eigenmode computation in real arithmetic, let us assume the time dependence as 

 )exp()(),( trtr λ−= eE .       (2.22) 

Here λ is the decay constant for EM fields. 

This relation transforms equation (2.21) as 

 )()()( 0 rrr ee σλµ=×∇×∇ ,       (2.23) 
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where λ is the eigenvalue and e(r)  is eigenfunction. Equation 2.23 states the EM 

eigenproblem. Here, it may be emphasized that equation 2.23 states a generalized 

eigenproblem and as a result the eigenfunctions will not be simple orthonormal rather these 

will be sigma-orthonormal. The sigma-orthonormality condition is defined as 

 mnmn
V

rdrere δσ =∫ 3)().( ,        (2.24) 

where δmn is kronecker symbol. 

 As the general MT equation with harmonic time dependence of exp(iωt), the 

equation (2.20) can be recast as the vector Helmholtz  equation as, 

 0see ~~~
0 =+×∇×∇ σωµi .      (2.25) 

Since any vector can be expanded as a sum of orthonormal vectors, we expand ẽ as 

 )()(),(~ rar n ee ∑= ωω .       (2.26) 

Substituting equation (2.26) in equation (2.25) and using equation (2.23), we get 

 0n se ~)(0 =+∑
n

nn ia σωλµ .      (2.27) 

 Multiplying by ne  on both sides, integrating over the whole domain and taking 

sigma orthogonality into account, we get 

 ∫ ⋅
+

=
Vn

n dV
i

a n0 es~
)(

1)(
0 ωλµ

ω .      (2.28) 

 This coefficient relation is valid when we are solving the total field problem. Using 

these coefficients and equation (2.26) one obtains the total electric field. 

 The electric field is not continuous at boundaries between media with different 

resistivities. This condition gives errors in numerical modeling using Differential Equation 

Methods (DEM). To overcome this, secondary field formulation comes in use resulting 
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from anomalies (Mogi, 1996). To avoid unnecessary calculation one prefers to work in 

secondary fields. In secondary field formulation total field is described as 

 SPT eee ~~~ += .        (2.29) 

Where subscript T denotes total field, P corresponds to primary and S corresponds to 

secondary field. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Anomalous conductive block in a half space 

 
 
 Primary field is the response of layered 1D model, while secondary field is the 

response due to inhomogeneity present in the layered earth or half space. Figure 2.2 shows 

3D inhomogeneity present in the half space. Pσ  and Sσ  respectively are the conductivities 

of half space and anomalous region present in it. Thus, the total conductivity is defined as 

sum,  

  SPT σσσ += .        (2.30) 

Sσ  

Pσ  



 31

So in wave number domain one can define 2
Tk  as 

 222
SPT kkk += ,        (2.31) 

where σωµ0
2 ik = . 

Substituting equations (2.29), (2.30) and (2.31) into (2.25), we get 

 Ps ee ~~)( 222
sT kk −=+∇ ,       (2.32) 

with the identity eee ~)~(~ 2∇−⋅∇∇=×∇×∇ . 

Using equation (2.27) the coefficient relation is modified as, 

 ∫ ⋅
+

−=
V

s
n

n dV
i

ia nP ee~)( σ
ωλ

ωω .      (2.33) 

These coefficients are substituted in equation (2.26) to obtain the secondary field values, ẽs. 

These secondary field values are added with primary field to get the total electric field 

values using equation (2.29). Equation (2.14) is used to solve for the magnetic induction 

vector b and then equation (2.8) is used to obtain the magnetic field intensity vector h. 

However, these field component values do not directly reflect effect of changes in the 

subsurface resistivity in a perceptible manner. So, more representative response functions, 

derived from these field values are discussed in the following. 

2.6 MT Response Function 

 Although the response functions derived from the fields values also do not present a 

direct functional relationship with the subsurface resistivity yet these reflect the bulk 

information about the resistivity distribution. 

 The appropriate choice of response function is governed by the objective of the 

study, whether lateral or vertical variation in resistivity is desired. The spatial variation can 
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be studied in two modes, (i) profiling mode, for a given frequency, the observations are 

taken at points along a profile, and (ii) sounding mode, the observations are taken at a 

single point for different frequencies. Profiling delineates the lateral variations while 

sounding helps in deciphering the vertical variation of resistivity. 

2.6.1 MT apparent resistivity and phase  

 The magnetotelluric method was first described by Tikhonov (1950) and Cagniard 

(1953) independently. Using the assumption of a plane wave source, the ratio of observed 

horizontal electric field (ẽx or ẽy) and the orthogonal magnetic field component (hx or hy), 

is called the impedance; 

 
x

y

y

x

h
e

h
eZ ~

~
~
~

−== .        (2.34) 

 The impedance values are used to define the commonly used MT response function 

as apparent resistivity, which may be defined as the resistivity of equivalent fictitious half 

space. The apparent resistivity, ρa, and the impedance phase, ф, are respectively given by 

the relation 

 21 Z
ωµ

ρ =a  ,            (2.35) 

 and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

)Re(
)Im(tan 1

Z
Zφ ,       (2.36) 

 where 0900 ≤≤ φ . 

 For a homogeneous half space, phase will always be 450. For a conductive body in 

half space phase varies from 450 to 900, while for a resistive body it varies from 00 to 450.  
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 The variation of resistivity in the earth is rarely one-dimensional, therefore above 

definition of apparent resistivity and phase has only limited utility. To describe higher 

dimensionality or anisotropy, Cantwell (1960) introduced a rank 2 impedance tensor Z. 
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       (2.37) 

 or 

 hZe ~~ = , 

where Zxy, Zyx are principal impedances and Zxx, Zyy are additional impedances. For a 1D 

earth, 

 Zxy = Zyx 

 Zxx = Zyy = 0 

  

 In case of 3D one can find out the solution in any of the horizontal directions. If we 

fix one direction as strike direction then we can find the solution for both E-polarization 

and H-polarization analogous to 2D case. (This is case when we assume that our strike 

direction is Y) Different field components for both cases are defined as 

 ẽTM = (ẽx, 0, 0), hTM = (0, hy, 0),      (2.38) 

 ẽTE = (0, ẽy, 0), hTE = (hx, 0, 0).      (2.39) 

For Hpol (2D TM), the impedance and apparent resistivity and phase are defined as 

  
y

x
xy h

e
Z ~

~
= , 

2

0

1
xyZ

ωµ
ρ =xy , ⎟

⎟
⎠
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−=
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)Im(
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xy

xy

Z
Z

xyφ .   (2.40) 

 

Similarly for Epol (2D TM) 
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 The vector Helmholz equation with requisite boundary conditions is posed as EM 

eigenvalue problem. The theory of EM problem using eigenmode is presented. Total field 

formulation, secondary field formulation, derivation of h field and the response functions 

such as impedance, apparent resistivity and phase are described here. The EM eigenvalue 

problem can not be solved analytically because the analytical solution does not exist for 

boundary value problems with arbitrary variation of resistivity. Therefore, the EM 

eigenvalue problem, in its generality, can only be solved using some numerical technique. 

In present work the numerical technique Finite Difference Method is used to transform the 

EM eigenvalue problem (2.23) to the corresponding matrix eigenvalue problem and 

Lanczos/Arnoldi methods are used to solve for the eigenvalue/eigenvectors of the matrix. 

These methods are discussed in the next chapter.  
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CHAPTER 3 

FINITE DIFFERENCE IMPLEMENTATION 

3.1 Introduction 

The EM data interpretation activity crucially depends upon the accuracy and 

efficiency of the forward modeling algorithm. The analytical solutions of the governing 

partial differential equation, derived from Maxwell’s equations, exist only for models with 

simple geometry and resistivity variation such as layered earth, sphere, etc. Even these 

analytical solutions involve complex integral or infinite series. Hence, an exact solution of 

most EM problems is not computable. The only alternative is to opt for numerical 

solutions. 

 There are two broad classes of numerical methods; Integral Equation Method (IEM) 

and Differential Equation Method (DEM). Both of these classes of methods have merits 

and demerits in terms of their efficiency and versatility. Preference of one method over the 

other is governed by the complexity of the model and available computer resources. These 

methods translate the integro-differential operator equation into a matrix equation. In IEM, 

the integral operator equation is transformed to the matrix equation through quardrature 

formulae. In IEM only anomalous region is modeled, resulting in a small but full 

coefficient matrix. However, the popular use of IEM is restricted to only finite volume 

targets buried in a simple geometry host. 

 For arbitrary variation of conductivity, the DEMs, like Finite Difference Method 

(FDM) and Finite Element Method (FEM), are commonly used. In these methods the 

whole domain of study is discretized. This results in large but grossly sparse coefficient 
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matrix. Recent advances in iterative matrix solvers, has resulted in these methods becoming 

superior to IEM. In FEM, the differential operator is reduced to a matrix through functional 

minimization while in FDM, it is reduced through finite difference equations. The 

mathematics of FDM is easier to implement than that of FEM. In the present work, FDM is 

used for 3D MT modeling. 

3.2 Finite Difference Implementation 

In FDM, the derivatives are approximated by the appropriate difference formula 

obtained by the Taylor series expansion. For detailed description of FDM, one can refer to 

standard texts like Forsythe and Wasow (1964), Hildebrand (1974), Mitchell and Griffiths 

(1980), Taflove (1995). A brief account of FD formulation of EM problem follows. 

The EM eigenproblem defined by equation (2.23) can be transformed using the 

vector identity given in equation (2.32), to the differential equation 

e(r)e(r) σλµ0
2 =∇−  .       (3.1) 

This eigenproblem can be rewritten as 

dvdv
v v

ϕσλµϕ∫∫∫ ∫∫∫−=∇ 0
2 ,       (3.2) 

where, φ denotes the scalar quantity representing any one of the three electric field 

components. Using Gauss integral theorem, the left hand side of the equation (3.2) can be 

transformed into surface integral equation 

dsndv
v s
∫∫∫ ∫∫ ⋅∇=∇⋅∇ ˆ)( ϕϕ ,       (3.3) 

 This step transforms the second order partial differential equation into first order one 

which is then approximated using central difference formulae. 
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For implementation of FDM to solve equation (3.1), the 3D grid discretization of a 

block domain is presented in the Figure 3.1. It is discretized by straight lines parallel to the 

three- coordinate axes (x-, y-, z-) in cartesian coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: 3D Finite Difference grid. 

3.2.1 Implementation of staggered grid 

One can use either a normal grid or a staggered grid to implement FDM. In normal 

grid all the six electric and magnetic field components are assigned to one node while in 

staggered grid these are assigned to different points in a grid. As a result of numerical 

computations, B⋅∇  is not exactly zero in case of normal grid. However, in case of 

staggered grid, due to the arrangement of the electric and magnetic field values, B⋅∇  is 

implicitly zero. Thus, the field values, computed using staggered grid, are less erroneous 
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than those obtained using nodal grid. The staggered grid was introduced by Yee (1966) for 

electrical engineering problems but is now widely used to solve the EM problems in 

various disciplines. 

Let the number of cells in the grid be nx, ny and nz in x-, y- and z- directions 

respectively. Conductivity of the cell (i,j,k) is represented as σ(i,j,k) and its volume as 

v(i,j,k) = a(i).b(j).c(k), where a(i), b(j) and c(k) are the distances between two adjacent 

nodes in x-, y- and z- directions respectively (Figure 3.2). The edges of the cube are (x(i), 

x(i+1)), (y(j), y(j+1)) and (z(k), z(k+1)). The cell edge centers are defined as xc(i),  yc(j) 

and zc(k) with 

 
2

)1()()( ++
=

ixixixc  , 
2

)1()()( ++
=

jyjyjyc and 
2

)1()()( ++
=

kzkzkzc . 

The distance between two adjacent midpoints are defined by ah(i), bh(j) and ch(k) in x-, y- 

and z- directions respectively. 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.2: Arrangement of electric and magnetic field components on Yee’s 

grid. 
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In Yee’s staggered grid implementation, the six field components (three electric and 

three magnetic) are assigned to different points of each cell. In the current presentation 

(Figure 3.2) electric field components are assigned to the centre of cell edges while 

magnetic components are assigned to the centre of cell faces. In Figure 3.2, ex (i, j, k) is 

defined at {xc(i), y(j) , z(k)} position, ey(i, j, k) at {x(i), yc(j), z(k)} and ez (i, j ,k) at 

{x(i),y(j),zc(k)} respectively. 

At the air-earth interface (z = 0), the grid is artificially extended to half cell height 

c(1)/2, into the air and the missing values are obtained by using field continuation 

algorithm given in Appendix A1 in detail. Rest of the five domain bounding surfaces are 

assumed to be perfectly conducting and the homogeneous Dirichlet boundary condition i.e. 

vanishing tangential component of electric eigenmodes at each surface, is imposed. 

When employing FDM to solve the problem, it is better to take spatial average of 

conductivity at a node (Weaver, 1976). The integration is taken over a prism centered at the 

point where the electric component is evaluated to calculate the volume weighted average 

conductivity of the surrounding prism. The average conductivities, ),,( kjixσ , 

),,( kjiyσ and ),,( kjizσ , correspond to eigenmode components are ),,( kjiex , ),,( kjiey  

and ),,( kjiez  respectively. The average conductivity ),,( kjixσ , shown in Figure 3.3, is 

defined as 

⎭
⎬
⎫

⎩
⎨
⎧

−−+−−−−
+−−+

=
)1,,()1()(1,1,()1()1(

),1,()()1(),,()()(
),,(4

1),,(
kjikcjbkjikcjb

kjikcjbkjikcjb
kjiV

kji
x

x σσ
σσ

σ , 

where )()()(),,( kcjbiakjiV hhx ⋅⋅= .       (3.4) 



 40

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The grid cells and associated electric (red colour) and magnetic (blue 
colour) components required for the FD equation of ex(i,j,k). The 
shaded prism is of averaged conductivity ),,( kjixσ . 

 

The Finite Difference (FD) approximation of eigenvalue equation for xe  component is 

obtained from equation (3.3), 
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Here, by and bz are magnetic field components in y and z directions and these are further 

FD approximated, when applying equation (2.22) into equation (2.3) as 
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From the two equations (3.5) and (3.6), it is clear that each electric component is 

connected with only surrounding twelve electric components. Therefore, the resulting 
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coefficient matrix will be 13 diagonal matrix. The symmetry of this matrix is conserved by 

the transformation; 

),,(e),,(),,(e xx kjikjidkji x= ,      (3.7) 

where the transformation factor dx(i, j, k) is  

),,(),,(),,( 0 kjiVkjikjid xxx σµ= ,  

with Vx(i, j, k) being volume of the prism surrounding the point (i,j,k) where field is 

evaluated. 

The resulting final equation for all electric field components in all the three directions is 

described in Appendix A2. 

3.3 Description of System Matrix 

After employing finite differences representation, the algebraic equations are 

assembled to form a matrix equation; 

ee λ=A .      (3.8) 

  The electric field components can be arranged in different ways. Using different 

arrangements the eigenvalues and eigenvectors are not changed but the computational 

efficiency may be affected. The matrix A is real, symmetric, semi-positive definite and 

grossly sparse. The size of the matrix depends upon the total number of electric field 

components. The numbers of three electric field components are, 

number of ex components = nx (ny-1) nz, 

number of ey components = (nx-1) ny nz, 

number of ez components = (nx-1) (ny-1) nz. 

Thus, the size of the matrix is 
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NA = Nh nz + (nx-1) (ny-1) nz.      (3.9) 

with Nh = nx (ny-1) nz + (nx-1) ny. 

The system matrix has a maximum 13 non-zero elements in each row or column 

besides the full block, due to field continuation, corresponding to the horizontal field 

components at air-earth interface. This full block is of dimension Nh x Nh.  

Firstly, the matrix eigenvalue problem is solved using the direct method of Singular 

Value Decomposition (SVD). This method does not take into account symmetry and 

sparsity and hence is not suitable for large size problems because of the explicit storage 

requirement of the matrix. To check the working of eigenmode formulation, the method 

was tested for half space model having resistivity10 Ω-m, discretized using a uniform grid 

having 566 ××  cells in x-, y- and z-directions respectively. The resulting eigenvalues are 

plotted vs. eigenvalue number in Figure 3.4. 
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Figure 3.4: The eigenvalue plot for uniformly discretized half space. 
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Striking feature of the full spectrum of eigenvalues, shown in Figure 3.4, is that 

about one third of the total eigenvalues are equal to zero. In fact, the number of these zero 

eigenvalues is exactly equal to the number of internal nodes of the grid which is also equal 

to the number of ez components, i.e. {(nx-1)(ny-1)nz}. These zero eigenvalues are termed 

as spurious eigenvalues and corresponding eigenvectors are also termed as spurious 

eigenvectors as these do not contribute to the field synthesis. Only the positive eigenvalues 

contributes to the solution. The positive eigenvalues are generally simple but may be 

multiple for degenerate case like, half space model. These positive eigenvalues are 

bounded in a region (λmax – λmin) as given below, 

The min value of eigenvalue λmin is defined as, 
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The maximum value λmax is defined by, 
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Here, lower bound depends on the overall dimension of the model while the upper bound 

depends upon grid discretization (Weidelt, 2009). Next section describes how these 

spurious eigenvalues are eliminated. 

3.4 Elimination of Spurious Eigenmodes 

The spurious eigenvalues suggest that the system has less degree of freedom than 

envisaged from the geometry. To study how these spurious modes can be eliminated, take 

the divergence of the eigenvalue equation (2.23), 

0))()(( 0 =−×∇×∇⋅∇ rr ee σλµ ,      (3.12) 
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0))(( 0 =⋅∇ reσλµ .        (3.13) 

There are only two possibilities; 

i) either λ ≠ 0 then 0))()(( =⋅∇=⋅∇ je rrσ   

ii) or λ = 0 then 0≠⋅∇ j . 

In the second case, the divergence free current density condition is not satisfied. Thus, to 

avoid spurious eigenmodes, the divergence free condition is enforced explicitly. 

0=⋅∇ j ,         (3.14) 
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Now, applying FD to this divergence equation we get, 
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The definition of jx, jy and  jz are, 

),,(e),,(),,(j xx kjikjikji xσ= , 

),,(e),,(),,(j yy kjikjikji yσ= , 

),,(e),,(),,(j zz kjikjikji zσ= .      (3.17) 

The number of spurious eigenmodes is equal to the number of ez components, solving 

above equation for ez component, 
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Using Ohm’s law to express jx and jy in terms of ex and ey respectively we get, 
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 3.19) 

For first layer corresponding to k =1, the first term in above equation is zero 

because 0)1,,( =−kjizσ . Thus, each vertical component can be represented by four 

horizontal components of the same layer and four components of the layer just above it. 

Thus, for each vertical component a total of k⋅4  components are added to each row. This 

equation is applied to all ēz components, reducing the matrix dimension to NR = NA – Nv, 

Nv being the number of ez components. In the reduced matrix, the number of non-zero 

elements from the direct FD coefficient matrix reduces to 9 from 13 because of 

replacement of four ēz vertical components with horizontal components. This suggests a 

maximum of k⋅16 replacements in general, and it leads to )12(6 −⋅ k non-zero elements in a 

row of layer k.  

This increase of additional elements in a row leads to loss of symmetry. Each layer 

components are related to all the components of above overlying layers. 

3.5 Reduced System Matrix 

The reduced coefficient matrix structure is shown in Figure 3.5. The eigenvectors 

have only the horizontal components. The dimension of reduced system matrix is 

( ) zyxyxR nnnnnN )1()1( −+−= . The matrix is real, non-symmetric, positive definite, and 

smaller in size by a factor of approximately 1/3. It is less sparse in comparison with the 

original symmetric matrix. The matrix elements are stored in compressed sparse row (CSR) 
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format (Saad, 1994) because of its efficient performance for some of the standard matrix 

operations. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Representation of reduced matrix structure. 

 

After implementing the divergence correction, the final reduced matrix is obtained. 

Now, the eigenmodes of this matrix are to be found using some efficient eigenmode solver.  

3.6 Eigensolver for the Matrix 

A variety of matrix eigensolvers such as direct, iterative and semi iterative are used 

in EM problems (Sarkar et al., 1981). Direct solvers, where the complete matrix banded or 

full matrix is stored, provide the solution in finite but large number of steps. In iterative 

methods, on the other hand, where an initial guess is improved in a series of iterations, the 

procedure can be stopped whenever the approximate solution with prescribed accuracy is 

obtained. Iterative methods exploit sparsity structure of the matrix to the maximum 

(Jacobs, 1981) and are therefore preferred for sparse systems. Though iterative solvers 
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score on sparsity ground, yet their use is not recommended when diagonal dominance is 

not guaranteed or when the matrix is indefinite. Semi-iterative methods based on Conjugate 

Gradient (CG) method are commonly used even for indefinite matrices.  

When the coefficient matrix is real, positive definite and large in size, iterative 

methods are widely used to obtain the eigenvalues and eigenvectors. The oldest method to 

find eigenvalue iteratively is the power method. This method was first used to find the 

largest eigenvalue of the system matrix. Krylov subspace projection methods are based 

upon the intricate structure of the sequence of vectors naturally produced by the power 

method. In Krylov methods, only product of the matrix with a vector is needed. Arnoldi 

and Lanczos are popular Krylov subspace methods. Lanczos is used for symmetric 

matrices while Arnoldi is used for non-symmetric matrices. Since in our eigenmode 

solution of EM field problem, only a small subset of smallest eigenvalues is needed, we 

have adapted the ‘ARPACK software’ subprograms based on Arnoldi method, in the 

development of our eigenmode solver to find the eigenvalues. 

ARPACK (Arnoldi Package) (Lehoucq et al., 1997) is a collection of FORTRAN 

subroutines used to solve large eigenvalue problems. This is based on implicit restart 

scheme, known as Implicit Restarted Lanczos/Arnoldi Method (IRAM/IRAM), which is 

very efficient in finding a small subset of desired (either smallest or largest) number of 

eigenvalues and eigenvectors of a matrix. Storage requirement are of the order of 

))()(( 2kOkON +⋅ . This software is capable to determine the desired pre-specified number 

of eigenvalues for largest magnitude (LM), smallest magnitude (SM), largest algebraic part 

(LA) and smallest algebraic part (SA). To obtain the desired subset the implicit restarted 

scheme is presented in the next section. 
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3.6.1 Implicitly restarted Lanczos/Arnoldi method 

Lanczos/Arnoldi method is a Krylov subspace based method. A basis of Krylov 

subspace can be obtained from any arbitrary starting vector (V1) and its repeated product 

with the system matrix A. The Krylov basis vectors not being orthogonal, are 

orthogonalized and the orthogonalized basis vectors serve as Lanczos/Arnoldi vectors. 

Lanczos/Arnoldi method was used to solve for all eigenvalues and eigenvectors of a 

symmetric/nonsymmetric matrix using the relation 

rVHAV += ,         (3.20) 

where A is the coefficient matrix, V is the matrix of Lanczos/Arnoldi vectors of dimension 

N column-wise, H is a symmetric tri-diagonal/upper Heisenberg  matrix and r is the 

residual vector. The Matrix A is of NN×  and the vector r is an N dimensional vector.  

Complete eigenanalysis of the tridiagonal/upper Hessenberg matrix H need be performed. 

This, in turn, leads to eigenvectors of matrix A. Theoretically, r should be zero but in finite 

precision arithmetic it has a prescribed very small value.   

Presently, Lanczos/Arnoldi Method is widely used to find a desired subset of 

eigenvalues as described by Sorensen (1992). In the present case, the interest is in M 

smallest eigenvalues and corresponding eigenvectors. After the generation of M 

Lanczos/Arnoldi vectors, the residual vector has a finite value. To find M smallest 

eigenvalues and corresponding eigenvectors, we have to generate a subspace with M+P 

Lanczos/Arnoldi vectors as given below  

T
PMPMPMPMPM erHVAV +++++ += .      (3.21) 

In this case V matrix is of the order of N×(M+P) and H matrix is of the order of 

(M+P)×(M+P). Eigenanalysis of this smaller dimensional matrix H is performed rather 
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than full N×N matrix. The eigenvalues obtained from this M+P factorization reflects 

characteristics of full spectrum of N eigenvalues. We arrange M+P eigenvalues in 

increasing order so that last P largest eigenvalues becomes unwanted ones.  These P values 

are used as shifts to update the first M values via QR iterations. In this updating process 

Lanczos/Arnoldi vectors are forced to belong to the subspace corresponding to smallest 

eigenvalues and the residual vector rM+P becomes very small iteratively. This technique is 

known as Implicit Restart Techinque. It is recommended that P be greater than M. There 

are two modes to find the subset of eigenvalues defined as ‘regular mode’ and ‘shift and 

invert mode’ as discussed below. 

3.6.1.1 Regular mode 

In regular mode, one deals with the problem 

xAx λ= .         (3.22) 

In this mode only product of the matrix with a vector is needed. Arnoldi method converges 

faster for larger magnitude eigenvalues; therefore to calculate smallest eigenvalues with 

SM or SA it takes longer time. 

3.6.1.2 Shift and invert mode 

 In shift and invert mode, the dealing equation is 

ξλ
ννξ

−
==− − 1,)( 1 xxIA .       (3.23) 

The eigenvalues converges near to applied shift ‘ξ’. This method converges faster 

when determining the smallest eigenvalues. The main disadvantage of implementing this 

mode is that one must provide a matrix solver, either direct or iterative, to obtain the term 

(A-ξI)-1x. 
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Any one of the conjugate gradient based methods can be used to solve for the 

product (A-ξI)-1x. There are different variants of conjugate gradient methods such as 

Conjugate Gradient (CG), Bi-Conjugate Gradient (BiCG) and Bi-Conjugate Gradient 

Stabilized (BiCGStab) methods. To increase efficiency of these methods, different 

preconditioners such as Jacobi or incomplete factorization methods are also used. 

Incomplete factorization method ILU (0) means that during LU factorization there is zero 

fill in. Van der Vorst (2003) suggested that BiCGStab with ILU(0) gives better results. The 

number of iterations needed to solve a matrix equation by various methods using the 

preconditioner ILU (0), are given in Table 3.1. The matrix was of order 5050× .  

 

Table 3.1: Comparison of different methods with preconditioners for best invert 
matrix solver.  

 

Method Number of iterations 

CG 30 

BiCG 20 

BiCGStab 15 

CG + ILU(0) 12 

BiCGStab + ILU(0) 9 

 
 

3.7 Synthesis of Full Eigenvector 

The eigenvectors of the reduced matrix obtained using IRAM are orthogonal to 

each other. As the reduced eigenvectors comprise only the horizontal components, these 

have dimension NR. The eigenvectors must be transformed into full eigenvectors for use in 
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field synthesis. The remaining components of the eigenvectors are obtained by using 

spurious eigenvector relation (3.19). The ez components are appended to the reduced 

eigenvector components. A good feature is that these full eigenvectors are also numerically 

orthogonal. Hence, there is no need to orthogonalize these full eigenvectors again 

explicitly. However, these eigenvectors should follow the sigma orthogonality relation, 

ln
1

)()(ˆ)(ˆ)( δσ =∑
=

mVmmm
AN

m
nl ee .      (3.24) 

This condition yields a scaling factor nη , given in Appendix A2, which provides the final 

sigma orthogonalized eigenvectors as, 

nn ee ⋅= nηˆ ,         (3.23) 

where en are back transformed from ne using the transformation relation (3.13). 

This completes the discussion of implementation of Finite Difference for the 

solution of eigenmodes. These eigenmodes are used to solve for the superposition 

coefficients using equation (2.33). Secondary field values are then solved using equation 

(2.26) and finally equation (2.29) gives the total field values, ẽT. These field values are next 

used to derive the magnetic field h and the response functions: impedance, apparent 

resistivity and phase. In next chapter, developmental details of the algorithms MT_2D_EA 

and MT_3D_EA are discussed. 
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CHAPTER 4 

DEVELOPMEMNT AND DETAILS OF ALGORITHM 

4.1 Introduction 

We started with the development of 2D algorithm MT_2D_EA and finally 

developed the 3D algorithm MT_3D_EA. In both these algorithms Finite Difference 

Method (FDM) is used to obtain the discretized EM eigenvalue problem. The eigenmodes 

of the corresponding coefficient matrix, obtained using Lanczos/Arnoldi method, are then 

used to synthesize the electric field vector which, in turn, was used to obtain the magnetic 

field vector and the derived MT response functions impedance, apparent resistivity and 

phase. The sequence of development, highlighting the difficulties faced and the manner in 

which these were overcome, is presented below. 

4.2 Sequence of Development 

The present study was spanned over a period of about five years. In this period 1D, 

2D and 3D modeling algorithms for magnetotelluric data were developed. In this section, 

the different versions of algorithm are presented. It may be stressed here that MT_2D_EA 

development took only 10% of the time spent on the development of MT_3D_EA. This 

was so because in the 3D case, bulk of the time was spent in overcoming the problems 

resulting from coarseness of the grid used. Use of a coarse grid became necessary because 

of the limitation on size of the problem imposed by the available PC or work station. As a 

byproduct, this study has led to a better understanding of the effect of coarseness of the 

grid on MT response.   
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4.2.1 Development of MT_2D_EA algorithm 

Initially, the 2D algorithm was developed using the same methodology as was to be 

used in 3D case i.e. eigenmode analysis using FDM. In the first development, the Dirichlet 

boundary condition was applied on all the four domain boundaries i.e. the two horizontal 

and the two vertical sides. The problem was solved only for internal nodes using total field 

formulation. The results were satisfactory at the centre of the model but these were 

somewhat anomalous near the vertical domain boundaries. The problem was circumvented 

by using autogrid and more appropriate boundary conditions. We replaced the manual grid 

with an autogrid generated scheme employing the skin-depth EM field decay criterion. 

Further, the application of integral boundary condition at the air earth interface and of 

asymptotic boundary condition at the vertical sides provided the accurate results even at the 

vertical boundaries of the domain. Since in MT formulation, the derived observables: 

impedance, apparent resistivity and phase, depend on the ratio of the components of E and 

H field values, we verified that for both E and H field boundary conditions the results are 

same. Prior to this conclusion achieved, all the eigenmodes were computed and then used 

to synthesize the electric field. 

Sufficiently large time and memory is required for the solution of all eigenmodes. 

In the expression of the superposition coefficient, in equation (2.27) or (2.32), the 

eigenvalue appears in the denominator and thus smallest eigenvalues dominate in the field 

synthesis. This observation suggested that use of only a small subset of smallest 

eigenvalues and corresponding eigenvectors may accurately synthesize the electric field 

values and thereby significantly reduce the computational time. For implementation of this 

step, the Implicitly Restarted Lanczos Method (IRLM) is used. This implementation 



 55

produces numerically accurate field values for 5% of eigenmodes in one fourth of the 

computational time needed for all eigenmodes. 

4.2.2 Development of MT_3D_EA algorithm 

In the case of 3D, taking cue from the experience of 2D algorithm, right from the 

beginning we implemented the integral boundary condition (IBC) at air earth interface.  

Following the formulation given in chapter 3, first the coefficient matrix (equation 

(3.8)) was generated for all electric field components. The resulting matrix was a 13-

diagonal symmetric matrix. We used Singular Value Decomposition (SVD) to solve for the 

eigenvalues and eigenvectors of this matrix. About one third (exactly equal to no. of 

vertical electric field components) of the total eigenvalues of this symmetric matrix was 

found to be zero. These zero eigenvalues and corresponding eigenvectors are termed as 

‘spurious’ and these are not used for field synthesis. The secondary field values are 

obtained without these spurious eigenmodes. Finally, the derived magnetic field and 

response functions are calculated using the electric field values. 

 The zero eigenvalues create difficulty in getting the smallest non-zero eigenvalues. 

This problem was resolved by using the current divergence equation (3.18) to eliminate the 

vertical electric field components by expressing these in terms of the horizontal 

components. However, in this process, the structure of resulting coefficient matrix is 

changed from symmetric to non-symmetric. Due to this we were unable to use the IRLM 

which is applicable only to symmetric matrices. Implicitly Restarted Arnoldi Method 

(IRAM) is used for non-symmetric matrices. In IRAM to obtain smallest eigenmodes Bi-

CGStab (Bi- Congugate Gradient Stabilizer) with preconditioner ILU(0) is used. Using the 

IRAM, we observed that the convergence is achieved after two iterations itself. This 
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process did result in the convergence of eigenvalues. However, inspite of the fact that the 

remainder vector becomes null, the eigenvectors did not converge. This problem gets 

resolved, if in the next updating of eigenmodes, a non null vector (that is orthogonal to the 

previous eigenvectors) is used. These eigenmodes are finally used for field synthesis and 

response computations. 

4.3 Salient Features of MT_3D_EA Algorithm 

Besides the eigensolvers, various other steps are taken to enhance the efficiency and 

versatility of the algorithm MT_3D_EA. Since the algorithm has a compact modular 

structure, a subroutine can be plugged in or taken out easily without affecting the 

remaining program. The features to enhance versatility or efficiency are discussed below. 

4.3.1 Response functions 

The algorithm is presently developed to get the responses for magnetotelluric 

profiling. The responses are computed at the surface for a single frequency. The algorithm 

can compute response functions like impedance, apparent resistivity and phase, for both the 

modes, 2D-TE and 2D-TM given by equations (2.41) and (2.40) respectively. The choice 

of response modes is controlled by the counter mode_type. The response functions 

impedance and apparent resistivity and phase are computed in subroutine output_3D. 

4.3.2 Source term 

The program is so structured that the computations are carried out in terms of 

secondary fields. Later on, for total field computations, the primary fields are added to 

these secondary fields. Thus, in order to incorporate the source effect, only a subroutine 

computing the responses of primary layered earth model in the presence of given source, is 
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added in lieu of the existing subroutines eigenmode_1D and output_1D which compute the 

1D field due to a plane wave source. 

4.3.3 BiCGStab method 

Arnoldi method converges better in invert mode when evaluating the smallest 

eigenvalue. In invert mode, the matrix solver Bi Conjugate Gradient Stabilized (BiCGStab) 

is used because with appropriate preconditioner it provides the solution in optimal time. 

4.3.4 Multi-frequency response 

In the proposed approach, eigenmodes are independent of source or frequency and 

these depends only on the model characteristics. In conventional FDM algorithms, the 

program has to be re-run to generate the response for each frequency, while in our 

approach, once the eigenmodes are evaluated, the responses for different frequencies can 

be easily computed in negligible computer time. 

4.4 Description of MT_3D_EA Algorithm 

The algorithm, MT_3D_EA, employs FDM for solving the EM eigenproblem to 

compute the 3D MT responses. The algorithm comprises 11005 lines and 60 subroutines. It 

employs 4 complex arrays, 75 real arrays, 14 real variables and 24 integer variables. It 

works in double precision arithmetic. In order to control dimension overflows, various 

checks with error and stop messages are inserted in the program. The arrays are initialized 

and reused to optimize the memory requirement. The description and salient features are 

highlighted in the Figure 4.1. 

Total seven I/O units are opened in the program. The parameters and data controls 

are read from the input file. Two scratch files are used for buffer storage. The remaining 
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four output files are used for different outputs helpful in analyzing the results. Sample 

input/output files are given in the Appendix A4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Algorithm in nutshell. 
 

 
4.5 Structure of MT_3D_EA Algorithm 

The main module of the algorithm MT_3D_EA provides the infrastructure and runs 

the controls. In the main program the control parameters are defined, input and output files 

are opened and the subprograms are called as shown in Figure 4.2. Input data and other 

Basic Algorithm Statistics 

MT_3DEA - 11005 Lines 

Main program - 158 Lines 

Subroutines - 10847 Lines 

   60 (40+20*) 

* Adapted from other program 

 

Methodology 

 Finite Difference Method to transform the EM eigenproblem to matrix 

 eigenproblem 

 Eigenmode Formulation to express the electric field components as a linear 

 superposition of eigenvectors of the EM eigenproblem 

 Bi-CGStab with ILU(0) Preconditioner to implement the shift and invert mode of  

 IRAM efficiently 

 

Salient Features 

Integral boundary condition at the air-earth interface 

IRLM/IRAM for eigenproblem solution 

Very fast Multi-frequency response computation using eigenmodes 
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parameters are read in the subroutine input. A list of various subprograms highlighting their 

purpose and other details is given in Table A3.3 of Appendix A3.  

The grid data can be read in two ways either as a manually generated grid or as a 

logarithmically generated grid. The control parameters irx, iry and irz respectively control 

the grid choice in x-, y- and z-directions. The logarithmic grids are computed in subroutine 

grid. The resistivity or conductivity is read for the half space and for the anomalous prisms 

and finally stored in 3D arrays sx, sy and sz. Calculations of the elements of coefficient 

matrix, for all electric field components, are carried out in subroutine weight. Subroutine 

weight_ez is used for calculations for updating the elements corresponding to the horizontal 

components of coefficient matrix in the reduced matrix case where the ez components are 

replaced in terms of horizontal components ex and ey (equation (3.18)). Integral boundary 

condition is implemented in subroutines conti1, conti2, conti3 and conti4 depending upon 

the uniformity and non-uniformity of grids in horizontal directions. The starting vector is 

initialized in subroutine init.  

The subroutine eigenmode_1D is used for 1D layered model coefficient matrix and 

eigenmode computations and the subroutine output_1D generates primary field values for 

given frequency. 3D eigenmodes are computed in subroutine eigenmode_3D. These 

eigenmodes are used in subroutine output_3D for response function computations. The 

responses are obtained, in subroutine output_3D, by computing (i) the superposition 

coefficients using equation (2.33), (ii) the secondary field values using equation (2.26), (iii) 

the total field values using equation (2.29), and (iv) the response functions impedance and 

apparent resistivity and phase using equations  (2.40) and (2.41) respectively.  
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Figure 4.2: Flow chart of main program. 
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The subroutines output_1D and output_3D are recalled when the responses for multi-

frequencies are to be computed. 

Bulk of the computer time is consumed in eigenmode computations carried out in 

the subroutine eigenmode_3D whose flow chart is shown in Figure 4.3. It calls subroutine 

eigenstep to generate the Hessenberg matrix of Arnoldi formulation element and new 

Lanczos/Arnoldi vector (equation (3.20)). eigenstep implements the updating of 

eigenmodes using equation (3.21). This subroutine eigenstep is called twice if a subset ‘k’ 

of eigenmodes is needed, first for computing k components and secondly for computing p 

components (p>k). Eigenvalues and eigenvectors are solved in subroutine dlahqr. The 

eigenvalues of the computed Hessenberg matrix are ordered increasingly and last p 

eigenvalues are applied as shift to update first k eigenvalues in subroutine dnapps, adapted 

from ARPACK. During the iterative process last p values are discarded after dnapps and 

eigenstep is recalled for p component computation. This iterative process stops after 

reaching a threshold value lanc_tolr. The outcome eigenvectors contains only ex and ey 

components and remaining ez components are calculated in subroutine get_ez to constitute 

full eigenvector. 

Subroutine bicgstab is used in invert mode of IRAM (equation (3.23)) to solve a 

subset of eigenmodes as desired in eigenstep for subset of eigenmodes computation as 

shown in Figure 4.4. Subroutine ae1 is used for all eigenmode computation. In this 

subprogram Arnoldi steps are applied twice to get numerically orthogonal eigenvectors. 

Finally Hessenberg matrix is the outcome of this subprogram. 
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Figure 4.3: Flow chart of EIGENMODE_3D subprogram. 
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Figure 4.4: Flow chart of EIGENSTEP subprogram. 
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The control parameters and their purpose and numerical value for different options 

are listed in Table A3.1 of Appendix A3. The grid parameters and other run environment 

parameters used in different subprograms are described in Table A3.2 of Appendix A3. 

The description of development of algorithm is completed. The results of experiments 

performed for checking and validation of MT_2D_EA and MT_3D_EA are presented in 

the following chapter. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

After developing the requisite software it is natural to establish its efficiency and 

accuracy. The accuracy is established by performing various consistency design 

experiments and by reproducing the analytical results and the numerical results published 

in literature. The development of 3D algorithm was preceded by the developments of 1D 

and 2D codes. Therefore, first the 1D and 2D versions were tested and there after the 3D 

version. However, only the comparison for the responses of 2D and 3D models is 

discussed. 

5.1 2D Experiments 

The best check of any algorithm is the reproduction of established published results. 

Two 2D models were taken from COMMEMI (Comparison Of Modeling Methods for 

Electro-Magnetic Induction) paper (Zhdanov et al., 1997), one simple and other complex 

one. In COMMEMI paper authors describe the results of different algorithms based on 

Finite Difference, Finite Element and Integral Equation Methods for the same models for 

confidence. The comparison is presented here for electric field and apparent resistivity 

values only. 

5.1.1 Simple model 

The simple model, (2D-1) in the COMMEMI paper, is reproduced in Figure 5.1(a). 

It comprises a symmetrical rectangular insert embedded in homogeneous half space. The 

resistivity of the inserted block is 0.5 Ω-m while that of the half space is 100 Ω-m.  
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Figure 5.1: (a) Simple model (Model 2D-1 of COMMEMI, distance in km and 
resistivity in Ω-m), (b) eigenvalue plot; Comparison of COMMEMI 
(Zhdanov et al., 1997) and MT_2D_EA at 0.1s (c) electric field and (d) 
apparent resistivities. 
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The block, placed at a depth of 250 m from the earth surface, has a width of 1 km and 

thickness 2 km. The response is computed at a period 0.1s. In Figure 5.1(b) the eigenvalue 

plot for the model is presented and in Figure 5.1(c) and 5.1(d) respectively electric field 

and apparent resistivity responses are compared with the average values given in the 

COMMEMI paper. The RMS error between the two responses is 0.01. 

5.1.2 Complex model 

The complex model, (2D-4) of Zhdanov’s paper, is given in Figure 5.2(a). It 

consists of different blocks with resistivities varying from 2.5 Ω-m to 1000 Ω-m and with 

different widths and thicknesses. In the paper, they observed that the error is minimum at 

1s. They also stated that due to the secondary field calculations, the error in apparent 

resistivities varies in the range 5-10%. We are also using secondary field formulation, so 

we compared the responses at the same period. The eigenvalue plot for the complex model 

is given in Figure 5.2(b). The response of this model is compared in Figure 5.2(c). Again 

comparison is with the average values published in the paper. The RMS error in apparent 

resistivity is 0.06 or 6%, which is in the acceptance limits. We have observed that our 

results are closer to the Integral Equation Method results. 

 After having a good response from the 2D modeling algorithm, we moved on to 

study the performance of 3D algorithm. In case of 3D, due to limited computer facility, a 

severe limitation on the number of grid points was imposed and we were able to run 

models with very coarse grids. The effects of coarse grid led us to overcome several 

spurious numerical problems.  To test the algorithm, several tests are performed as 

described below. 
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Figure 5.2: (a) Complex model (Model 2D-4 of COMMEMI, distances in km and 
resistivity in Ω-m), (b) eigenvalue plot and (c) comparison between 
apparent resitivities of COMMEMI and MT_2D_EA at 1s. 
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5.2 3D Experiments and Results 

For 3D modeling experiments, we designed a simple model, shown in Figure 5.3(a), 

comprising a cube buried in a homogeneous half space. The dimensions of the cube are 

500m x 500m x 500m, its resistivity is 0.1 Ω-m while the resistivity of half space is 1.0 Ω-

m. We term it as 3D test model. 

The list of consistency and accuracy experiments conducted for 3D case is given below:. 

1. Comparison with analytical solution 

2. Convergence of electric field with the refinement of grid 

3. No contrast study 

4. Electrically same model 

5. Reduced and full version responses 

6. Effect of working with different percentages of eigenmodes 

7. Multi-frequency response computation 

8. Convergence of responses with Extending strike length to corresponding 2D 

response 

9. Comparison of our response of 3D-2 model of COMMEMI paper with their 

response. 

5.2.1 Comparison with analytical solution 

In the first exercise, we compared the eigenvalues and eigenvectors for a half space, 

discretized with uniform grid spacing in all three directions, with corresponding analytical 

results. The code for obtaining the analytical eigenvalues-eigenvectors was provided by 

Weidelt (2009). The eigenvalues and eigenvectors of full and reduced versions of the code 

matched exactly with the analytical ones. 
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5.2.2 Convergence of electric field with the refinement of grid 

To check the grid convergence, we chose three range of grids viz. coarse, medium 

and fine. In the coarse grid, the number of nodes were 10, 10 and 7 with (minimum, 

maximum) grid spacings being (250, 1000 m), (250, 1000 m) and (100, 1000 m) in X-, Y- 

and Z- directions respectively. In the medium grid, the number of nodes were 14, 14 and 9 

with (minimum, maximum) grid spacings being (125, 920 m), (125, 920 m) and (100, 1000 

m). Finally, in the fine grid, the number of nodes were 16, 16 and 12 and the (minimum, 

maximum) grid spacings were (80, 920 m), (80, 920 m) and (50, 1000 m) in X-, Y- and Z- 

direction respectively.  

The graphical presentations of eigenvalues for coarse, medium and fine grid cases 

are shown in Figures 5.3(b), 5.3(c) and 5.3(d) respectively. In Figure 5.3(e) and 5.3(f) the 

behavior of convergence of electric field and apparent resistivity is depicted for time period 

1s. In the coarse grid case, the spread in electric field response curve in both horizontal and 

vertical directions are maximum. In this case one can sense the presence of the conducting 

body but its location can not be exactly marked. In the medium and fine grid cases, the 

response curves are approximately same. So, one infer that as the grid is refined the 

response values converge to limiting true values. In the medium and fine grid cases, the 

horizontal position of the block can be clearly identified. In apparent resistivity curves the 

coarse grid one shows minimum deviation at the position of the block. The convergence of 

apparent resistivity response curves with refinement of grid is evident.  

It may be mentioned that in all three cases, the refinement of the grid was primarily 

carried out inside the cube and only one or two nodes were added outside the body. The 
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RMS errors of coarse and medium grid with respect to fine grid are 0.045 and 0.006 

respectively.  
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Figure 5.3: (a) 3D Test model (distances in km); Eigenvalue plot (b) coarse 
grid, (c) medium grid, (d) fine grid, 
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Figure 5.3 continued: Plots for different grids at 1s (e) electric field and (f) 
apparent resistivities. 
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5.2.3 No contrast study 

Another test conducted on the algorithm is to verify the convergence of a buried 

target response to that of half space when the resistivity of block is taken approximately 

equal to that of half space. The resistivity of block is modified to 0.9 Ω-m for this 

experiment. The electric field and impedances are computed and found to be almost 

identical to that of half space.  

5.2.4 Electrically similar models 

Next experiment is performed on electrically similar models to check the 

consistency. The electrically similar model of 3D test model is 0.05 Ω-m insert in a 0.5 Ω-

m half space with same dimensions at time period 2.0s. Theoretically both models should 

produce the same results. The behavior of electric field and apparent resistivity 

corresponding to 2D TE and 2D TM are shown in Figures 5.4(a), 5.4(b) and Figures 5.4(c), 

5.4(d) respectively. These responses also match with each other exactly. Thus it can be 

concluded that the algorithm is producing consistent results. 
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Figure 5.4: Plots corresponding to 2D TE mode for electrically similar models (a) real 
Ey field, (b) apparent resistivities,    
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5.2.5 Reduced and full version 

Eventually in the final algorithm, we are using the reduced version and generating 

full eigenvectors from the reduced eigenvectors. To check the effect of numerical errors in 

the full eigenvectors obtained from reduced eigenvectors, we compared the response of 

reduced version with the response computed using the full version. The response is 

compared for both the modes; one is corresponding to 2D TE as shown in Figures 5.5(a), 

5.5(b) and another corresponding to 2D TM as shown in Figures 5.5(c), 5.5(d). The 

comparison is given here for electric field and apparent resistivity values. These curves 

match exactly with each other. This means the reduced version is working accurately. 

 

Figure 5.4 continued: Plots corresponding to 2D TM mode for electrically similar 
models (c) Re Ex field and (d) apparent resistivities.  
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Figure 5.5: Plots for reduced and full versions corresponding to 2D TE mode (a) Ey 
field, (b) apparent resistivities;   and Plots corresponding to 2D TM mode 
(c) Re Ex field, (d) apparent resistivities. 
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5.2.6 Effect of working with different percentage of eigenmodes 

As discussed in the chapter 2, the eigenvalues appear in the denominator of the 

expression of superposition coefficient (equation (2.32)). So, in field synthesis, maximum 

contribution comes from the smallest eigenvalues. The present experiment is designed to 

know how many eigenvalues and corresponding eigenvectors are sufficient for numerically 

accurate response. In view of limited computer resources, we chose the coarse grid model 

so that we can also understand the effect of coarseness on the responses with different 

percentages of eigenmodes. In this experiment the percentage of eigenmodes taken are 5, 

10, 15 and 20. For these four percentage cases, the real and imaginary parts of electric field 

are compared with all eigenmode response in Figures 5.6(a) and 5.6(b) respectively. 
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Figure 5.6: Electric field plots for different percentages of eigenmodes (a) 
real part and (b) imaginary part. 

Distance (m)

500 1000 1500 2000 2500 3000 3500 4000 4500

Im
 E

y-
fie

ld
 (v

/m
)

-0.08

-0.06

-0.04

-0.02

0.00

All eigenmodes
20% eigenmodes
15% eigenmodes
10% eigenmodes
5% eigenmodes

(b) 



 77

In both the plots, the maximum spread is observed for 5% and the responses 

converge towards all eigenmodes response as percentage of eigenmodes increases from 5% 

to 20%. The RMS errors for different percentage of eigenmodes with respect to all 

eigenmodes are described in Table 5.1. This spread behavior is not expected, so we 

conducted the same experiment on 2D version of this 3D test model termed as 2D test 

model.  

 
Table 5.1: RMS errors for different percentage of eigenmodes in case of 3D. 

 
Percentage of eigenmodes Real e-field Imag e-field 

5 0.0823 0.0851 

10 0.0811 0.082 

15 0.0798 0.08 

20 0.0565 0.0583 

 

In case of 2D, two grids are chosen to check the effect of coarseness with different 

percentage, (i) the same coarse grid as used in 3D test model and (ii) the grid generated by 

the auto grid generator, based on skin depth criterion. Figure 5.7(a) shows the 2D test 

Model. Figures 5.7(b) and 5.7(c) show the eigenvalue curves for auto and coarse grids. In 

auto grid the curve rises steeply while in the case of coarse grid the steepness is much less. 

Figures 5.7(d) and 5.7(e) present the electric field and apparent resistivity responses for 

auto grid while Figures 5.7(f) and 5.7(g) present the same responses for coarse grid.  
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Figure 5.7: (a) 2D Test model (distances in km); Eigenvalue plot (b) skin-depth based grid, 
(c) coarse grid,  
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Figure 5.7 continued: Plots for different percentage of eigenmodes; For skin depth based 
grid (d) Re-electric field and (e) apparent resistivities and for coarse 
grid (f) Re-electric field, (g) apparent resistivity.  
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In auto grid case, the response curves for the four percentage cases match well with 

the all eigenmode case, even 5% of eigenmodes are sufficient for accurate field synthesis. 

For the coarse 2D grid, a spread behavior similar to that in 3D case is observed. However, 

with increasing percentage values, the responses do converge to that for all eigenmodes. 

From this exercise we conclude that auto grids provide accurate field values even for small 

percentage of eigenmodes.  

 We also conducted the experiment to observe the effect of different percentages of 

eigenmodes on the response of a resistive block model. For this purpose the model 

described as 2D-3 in COMMEMI report is considered. In this model the resistive and 

conductive blocks are placed at the surface. The model is shown in Figure 5.8(a) and the 

corresponding eigenvalue plot is presented in Figure 5.8(b).  
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Figure 5.8: (a) 2D-3 model of COMMEMI, (b) eigenvalue plot, 
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The response curves for 10s period are presented for 5, 10, 15 and 20% of 

eigenmodes. Electric field and apparent resistivity curves for different percentages are 

presented in Figures 5.8(c) and 5.8(d). In conductive block even 5% eigenmodes are 

sufficient but in resistive block only 20% eigenmodes gives satisfactory results. Thus for 

conductive block smaller number of eigenmodes are sufficient while for resistive block a 

larger number of eigenmodes are required. The RMS errors for 5, 10 and 20% eigenmodes 

with respect to all eigenmodes are 0.055, 0.122 and 0.255 respectively. 

 

 

 

Figure 5.8 continued: Plot for different percentage of eigenmodes at 10s (c) Real e-field 
(d) apparent resistivity. 
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Tables (5.2) and (5.3) present RMS (Relative Root Mean Square) error values with 

respect to all eigenmode response for both grids. 

 

 

% of Eigenmodes RMS Error 

20 0.011 

15 0.020 

10 0.023 

5 0.025 

    

 

 

% of Eigenmodes RMS Error 

20 0.014 

15 0.012 

10 0.066 

5 0.075 

 

5.2.7 Multi-frequency response computation 

In the proposed approach, eigenmodes are independent of source characteristics, 

rather these depend only on the model characteristics. Once the eigenmodes are computed 

for a grid, responses for any given set of frequencies can be obtained within insignificant 

amount of time while for other traditional algorithms it takes same amount of 

computational time for each frequency. We tested it on 3D test model for time periods 

Table 5.3: RMS errors for different percentages using coarse grid. 

Table 5.2: RMS errors for different percentages using skin depth based grid. 
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ranging from 0.001s to 50.0s. The electric field curves are shown in Figure 5.9(a). The 

0.001s curve senses only the upper half space and as time period increases the curves start 

sensing the conducting block. Upto time period values 0.5s, the central dip in the curve 

becomes more and more prominent as time period increases. However, for time periods 

greater than 0.5s this dip in curve decreases to the extent that it becomes a horizontal 

straight at 50s period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.9: (a) Electric field plots for different frequencies in 3D; 2D 
apparent resistivity curves using 1s and 10s grid eigenmodes 
(b) at 1s, (c) at 10s. 
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In order to study accuracy of the multi frequency response computations using 

eigenmodes, we again considered the 2D model. We generated autogrids corresponding to 

two time periods 1s and 10s and computed the responses for the two time periods using 

each one of these grids. The comparison of the response values for 1s and 10s time periods 

obtained using both the grids are respectively shown in Figures 5.9(b) and 5.9(c). The RMS 

error with respect to true response for 1s response is 0.014 and for 10s is 0.008. Hence, the 

multi-frequency responses computed using eigenmodes are quite accurate.  

5.2.8 Extension of strike length 

We have observed that the all eigenmodes response of a 2D model lies in the same 

range whether computed using a coarse grid or using a fine grid. Keeping this in mind, we 

chose a model (Brewitt-Taylor and Weaver, 1976) with same resistivities as of the test 

model but dimensions 1.0 km x 1.0 km x 0.65 km. In this experiment, the strike length of 

the block is extended in Y-direction as 1.0 km, 2.0 km, 5.0 km and 10.0 km, keeping the X 

and Z dimensions fixed. Figure 5.10(a) shows the model and Figure 5.10(b) shows the 

eigenvalue plots for different strike lengths. In the eigenvalue plots, the smallest and largest 

eigenvalues are same because the dimension of the body is fixed and smallest discritization 

and maximum and minimum values of resistivities are same.  
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Figure 5.10: (a) Test model (distances are in km); Plots for different strike lengths (b) 
eigenvalues, (c) Re electric fields, and (d) apparent resistivities.   
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The differences in the middle segments of the eigenvalue curves are due to the 

change in the conductivities values as strike length increases. In Figures 5.10(c) and 

5.10(d), the real part of electric field and the apparent resistivity plots for different strike 

lengths are respectively presented. In both response curves, as strike increases the response 

approaches towards the corresponding 2D response and for the 10 km strike length case the 

3D curves are analogous to the corresponding 2D curves. The RMS errors for 1, 2, 5 and 

10 km strike lengths are 0.386, 0.268, 0.142 and 0.009 respectively with respect to 2D 

result.  

5.2.9 Comparison with 3D-2 model of COMMEMI report  

Finally, to establish accuracy of the algorithm, a comparison with published result 

is presented. In case of 3D, the model is again taken from COMMEMI report, described as 

3D-2 in the paper and presented here in Figure 5.11(a). In this model a conductive block of 

1 Ω-m and a resistive block of 100 Ω-mis embedded in a 10 Ω-m surface layer, the two 

bottom layers are of 100 and 0.1 Ω-m respectively.   

 

 

 

 

 

 

 

 

 Figure 5.11: (a) 3D-2 model of COMMEMI,  
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The comparison is given for 100 km strike length and for 100s time period. Figure 

5.11(b) shows the eigenvalue pattern while Figure 5.11(c) presents the comparison between 

the apparent resistivity values of our algorithm and those of COMMEMI report. The RMS 

error between the two responses is 0.026.  

Once the accuracy and efficiency checks have been performed satisfactorily, we 

applied the algorithm, MT_3D_EA, on the MT field data obtained from Garhwal Himalaya 

for a DST (Department of Science and Technology, New Delhi, India) sponsored research 

project with the Department of Earth Sciences, IIT Roorkee. This exercise is described in 

the following. 

 

 

Figure 5.11 continued: (b) eigenvalue plot and (c) plots of apparent resistivity for 
COMMEMI and MT_3D_EA at 100s. 
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CHAPTER 6 

EXPERIMENT WITH FIELD DATA 

6.1 General 

After testing the algorithm on synthetic models, we conducted an exercise to 

generate 3D models for updating the 2D interpretation of the MT field data available with 

the Department of Earth Sciences, IIT Roorkee. During the period 2004-2006, a Broad 

Band Magnetotelluric (BBMT) survey was carried out by Israil et al. (2008) to infer geo-

electrical structure of Garhwal Himalaya. The MT data was recorded in Garhwal Himalaya 

on a profile from Roorkee to Gangotri. The location map of the region of study in 

Himalaya is presented in Figure 6.1. The designed profile line, comprising 44 sites, is 

shown in Figure 6.2. It crosses through major Himalayan Thrusts as, Himalayan Frontal 

Thrust (HFT), Main Boundary Thrust (MBT) and Main Central Thrust (MCT). Himalaya 

being a complex and inaccessible terrain, to minimize noise, the site interval was not 

uniform over the profile and varied from 2 km to 10 km. The observed data was processed 

using the technique of Shalivahan et al. (2006) for error minimization. They applied hybrid 

processing technique along with remote reference, coherence weighted estimation and 

Robust M estimation to reduce the errors in electric and magnetic field data. Tyagi (2007) 

obtained impedances using this processing technique. He also used strike code of (Groom 

and Bailey, 1989; McNeice and Jones, 2001) to get the regional strike and regional 2D 

impedances. The data was rotated along and perpendicular to the geoelectric strike to get 

TE- (Transverse Electric) and TM- (Transverse Magnetic) mode responses. He also 
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considered the effect of topography and found that the effect of topography was below 

noise level. 

 

 

 

 

Figure 6.1: Location map of Himalayan region. NB: Namche Barwa; GT: 
Gangdese Thrust; HKS: Hazara-Kashmir Syntaxis; ITSZ: Indus 
Tsangpo Suture Zone; KOH: Kohistan Island arc; LB: Ladakh 
Batholith; MBT: Main Boundary Thrust; MCT: Main Central 
Thrust; HFT: Himalayan Frontal Thrust; MMT: Main Mantle 
Thrust; NP: Nanga Parbat; NS: Northern Suture; SR: Salt Range; 
SDTZ: South Tibetan Detachment Zone; UK: Uttarakhand 
(Najman, 2006) (after Tyagi, 2007). 

 
 

UK
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Figure 6.2: Geological map of the study area (compiled from Virdi, 1988; 
Sorkhabi et al., 1999; Kumar et al., 2002). 1- MT Sites; 2- 
Thrust; 3- Cities; 4- Dehra Dun Reentrant; 5- Blaini-
Infrakrol-Krol; 6- DaMTha; 7- Garwhal  Nappe; 8- Jaunsar-
Simla (Undifferentiated); 9- Sunder Nagar-Berinag Groups; 
10- Undifferentiated  Metamorphics; 11- Undifferentiated 
Tertiaries; 12- Piedmont zone. MT data collected in the Indo-
Gangetic Plains, Siwalik, Lesser and Higher Himalayan 
region in Garhwal Himalaya. (after Tyagi, 2007). 
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 Tyagi (2007) used WinGLink software to obtain the 2D inverted models from data. The 

Final 2D models were obtained for TE-, TM- and joint TE-TM modes. We have considered 

the joint TE-TM model, given in Figure 6.4, as the base model for our study. The location 

of the earthquakes coincides with the conducting feature near MCT in the model proposed 

by Tyagi (Figure 6.4). This is interesting in the light of work of Khattri (1992) presenting a 

distribution of local earthquakes in Garhwal-Kumaon Himalaya as shown in Figure 6.3. 

From this, it is clear that majority of earthquakes occur near MCT.  The association of the 

conductive feature with the local earthquakes motivated us to further study the 

characteristics of this feature in detail and try to decipher its 3D geometry. 

 

 
 
 
Figure 6.3: Depth section showing local earthquakes recorded in Garhwal-

Kumaon Himalaya (Khattri, 1992) (after Tyagi, 2007). 
 
 

Our exercise was aimed at generating 3D models whose response will match the data. To 

start the exercise, first we experimented with 2D models to decide upon a simple 3D 

model. 
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6.2 2D Experiment 

The designed simple model from the complex 2D model proposed by Tyagi (2007) 

is shown in Figure 6.5. To match the computed 2D responses with the field data and with 

the inverted model response, we varied the model parameters. Multi frequency responses 

were compared with corresponding field data. From the time period list of MAPROS 

processing software, we chose two time periods 11.61s and 90.45s so that we can compare 

our response values with actual data values. Of these two time periods 3D study was 

carried out at 90.45s. This choice was made to meet the constraint on number of nodes in 

3D grid necessitated by the existing limited computational facility.   

Different experiments designed for 2D case are; 

1) Study with different basement depths 

2) Study with different block resistivities 

3) Multi-frequency responses 

4) Comparison with and without salient features  
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Figure 6.4: 2D resistivity models of the crust derived from inversion of 
joint TE-TM mode MT data (Tyagi, 2007). 

 
 
 
 
 

   
  

Figure 6.5: Gangotri simplified model. 
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6.2.1 Study with different basement depths 

In our code we have employed perfectly conducting basement. To study the effect 

of this conductive basement, we experimented with two basement depth values, 50 km and 

200 km. At 11.61s, there is no effect of basement depth as shown in Figure 6.6(a) where 

the 50 km and 200 km curves overlap. However, at 90.45s period the effect of basement 

depth is clearly visible as shown in Figure 6.6(b) where the two curves are separated. Since 

we are using 90.45s period for 3D case, the depth of the basement is finalized as 200 km. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6.6: 2D plot with different basement (a) at 11.61s, (b) at 90.45s. 
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6.2.2 Study with different block resistivities 

Next, we varied the resistivity of conductive block to find the appropriate resistivity 

of blocks. The responses are compared in Figure 6.7(a) and Figure 6.7(b) at 11.61s and 

90.45s periods respectively. Our main emphasis is on the study of the conductive feature 

near MCT. We carried out the experiment with resistivity value of this block as 5 and 8 Ω-

m keeping other parameters unchanged. It is clear that the 8 Ω-m response matches well 

with the data. So, we finally used 8 Ω-m resistivity of the conductivity block for further 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: 2D plot with resistivity variation of conductive block (a) at 11.61s, (b) 
90.45s. 

Distance (km)

0 20 40 60 80 100 120 140 160 180

Ap
p.

 re
s.

 (Ω
-m

)

1

10

100

1000

Data aquired
WingLink response

8 ohm-m block
5 ohm-m block

(a) 

1

10

100

1000

Distance (km)

0 20 40 60 80 100 120 140 160 180

A
pp

. r
es

. (
Ω

-m
)

1

10

100

1000

5 ohm-m block 

Actual data
WingLink fit

8 ohm-m block

(b) 



 97

6.2.3 Multi-frequency responses 

Next we checked the multi-frequency response computed using present algorithm 

and compared these with the field data. Two autogrids for periods 11.61s and 90.45s were 

generated for this study. The responses at 11.61s using the 11.61s autogrid and the 90.45s 

autogrid are compared with each other and with the field data and WinGLink response in 

Figure 6.8(a). The responses for both grids matches well with each other. In Figure 6.8(b), 

the 90.45s responses obtained using the 11.61s autogrid and the 90.45s autogrid are 

compared and these also match well with each other and with the data values. This 

experiment gives us confidence that the multi-frequency solution is not only accurate for 

simple geometry models but also for complex models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Response curves for mutifrequency using eigenmodes of 11.61s and 
90.45s grid (a) at 11.61s (b) at 90.45s. 
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6.2.4 Comparison with and without salient features 

Since we are interested in the conductive feature near MCT and we used 90.45s 

period in 3D modeling, we tested the effect of other features, such as conductive layer and 

resistive block, on the response at this period only. We removed these features one by one 

and compared the responses with the response of model having only the conductive block 

near MCT. The response curves plotted in the Figure 6.9 reveal that the curve segment over 

the conductive block is not affected by other features. Thus the 2D experiments reveal that 

study of single 8 Ω-m block with basement at 200 km for time period 90.45s is good 

enough for designing 3D models. The 3D nature of this conductive block can be studied as 

if other features are not there.   

 

 

 

 

 

 

 

 

Figure 6.9: Curves with and without the features other than conductor. 
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6.3 3D Experiment 

From 2D experimentation it is clear that the conductive block near MCT is main 

feature and its implication is presented in Figure 6.3 as many earthquakes occur near this 

zone and different 3D experiments performed on this conductive block are  

1) Effect of varying strike length 

2) Effect of changing depth to top of the conductive block 

3) Effect of varying the thickness and width of the block 

6.3.1 Effect of varying the strike length 

The first question that comes to mind in a 3D study is regarding the strike length of 

the body. In this experiment, strike length is varied from 20 km to 100 km. The length of 

the block in strike direction is taken as 20, 50, 70 and 100 km keeping other parameters 

fixed. Figures 6.10(a) and 6.10(b) show the effect of strike length variation respectively for 

2 km and 4 km depth to top of the block. In Figure 6.10(b), 70 km strike response lies 

closest to the 2D response. From Figure 6.10(c) it is clear that the 3D response curves 

approach the corresponding 2D response curve as the strike length increases.  
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6.3.2 Effect of changing depth to top of the conductive block 

Next we experimented with different depths to the top as 2, 4 and 6 km. At 2 km 

depth, curve did not follow the expected behavior outside the body as shown in Figure 

6.11. In this figure the edges of the block are clearly identifiable but did not follow the 2D 

response. At 4 km depth, response curve is smoother at the edges and finally it approaches 

the behavior of 2D response at 70 km strike. At 6 km depth (as suggested by Tyagi (2007) 

model), the response curve lies above the response curve of 4 km depth. Thus response 

curve for 70 km strike and 4 km depth is the most suitable one.  

 

 

 

 

 

 

 

 

 

Figure 6.11: Plot for depth to the top of block. 
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6.3.3 Effect of varying the thickness and width of the block 

We observed that at 70 km strike the curve suitably lies in the best range. Then we 

experimented by varying the dimension of block in orthogonal horizontal direction keeping 

the depth of burial and strike fixed. The depth to the top is taken 4 km and strike is fixed at 

70 km. The width of block in other horizontal direction varies as 20, 26, 40 and 50 km and 

the computed responses are shown in Figure 6.12. We can observe that as width increases 

the curves started flattening while bottom of the curve is approximately the same. At 50 km 

width the curve seems roughly flat. Thus 20 or 26 km width may be the best for 

comparison with 2D behavior. 

 

 

 

 

 

 

 

 

 

6.4 Conclusion 

From these experiments we conclude that the conductive block geometry can be 

taken as 70 km strike, 20-26 km width and 4 km depth and its resistivity is 8 Ω-m. This 3D 

study suggests that the conductive block is practically 2D in nature. 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

The work on this thesis started with an objective of inversion of 3D magnetotelluric 

data. It is well known that an efficient modeling algorithm is a prerequisite for developing a 

competent inversion algorithm for data interpretation. The work presented herein is 

description and discussion related with the development of an efficient 3D modeling 

algorithm based on eigenmodes for magnetotelluric data.  

The existing algorithms require re-run of the algorithm for each frequency. Thus, it 

requires same amount of computational time for each frequency. However, using 

eigenmode analysis, the multi-frequency responses are generated in negligible time once 

the eigenmodes, independent of frequency, are evaluated. In this approach, the eigenmodes 

depend only on the model characteristics. This efficiency is achieved by broadening the 

scope of the approach given in Stuntebeck (2003). She developed the technique for limited 

use of air-borne elctromagnetics for which theory is provided in her thesis. Based on that 

theory we developed the algorithm for magnetotelluric data. In order to build up the sound 

methodology of the algorithm, we started with 1D modeling where closed form solution of 

forward problem is available. After obtaining satisfactory results in 1D case, we developed 

the 2D algorithm named as MT_2D_EA and finally developed the 3D modeling algorithm 

MT_3D_EA. For these algorithms, bulk of the computational time is taken for the 

computation of eigenmodes. MT_2D_EA and MT_3D_EA were tested for its accuracy and 

efficiency using number of 2D and 3D models, presented in the paper (Zhdanov et al., 

1997), that are numerically solved using different algorithms based on matrix solver. We 

found that numerical responses obtained from the two approaches are same within 
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numerical errors. We observed that when responses for only few frequencies are computed, 

the computer time consumed by MT_3D_EA is more than the matrix solver based 

algorithms. However, when responses for large number of frequencies are required, a need 

for MT sounding, the total computer time requirement is less in case of eigenmode based 

technique than the matrix solver techniques. This is important to note here that the 

computed eigenmodes in forward modeling will be used as it is in computation of 

sensitivity matrix while developing the inversion software for 3D MT data. 

The algorithm is employed to generate 3D models for the field data, acquired by 

Israil et al. (2008) in Garhwal Himalaya. On the basis of 2D interpretation of this data set, 

Israil et al. (2008) proposed a 2D electrical model of the region. The key feature of this 2D 

model is a conductor near MCT. We studied the 3D nature of this conductor and found that 

the 2D approximation of the conductor was justified. 

The present algorithm is based on solving the secondary field EM eigenvalue 

problem using Finite Difference Method (FDM). The electric field values for any source 

are evaluated as superposition of the eigenvectors. The staggered grid, as proposed by Yee 

(1966), is used for accurate EM field computations. The FDM is used to transformed the 

EM eigenproblem to a symmetric matrix eigenproblem. It is found that one third of the 

eigenvalues of the 13-diagonal symmetric matrix becomes zero. As per concept of physics 

the zero eigenvalues and corresponding eigenvectors are not part of any physical system 

and we termed these as spurious eigenmodes. These eigenvalues are taken out of the study. 

by eliminating, using current divergence relation, the ez components from the system of 

equations. Now the system of equations deals only with the horizontal components ex and 

ey. This step reduces size of the resulting matrix to two third of the symmetric matrix. 
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However, the outcome of this reduction converts the symmetric matrix to non-symmetric. 

The eigenvalues and eigenvectors of the reduced non-symmetric matrix are computed. The 

electric field is continued analytically into the air through integral boundary condition. This 

step results in making nonzero all elements of the submatrix block corresponding to air-

earth interface nodes.  

Lanczos/Arnoldi method is used for evaluating the eigenmodes of symmetric/non-

symmetric matrix. From the eigenmode formulation it is clear that, during superposition, 

only a subset of the smallest eigenvalues contributes significantly to the synthesis of field 

values. To get this subset of eigenmodes, Implicitly Restarted Lanczos/Arnoldi Method 

(IRLM/IRAM) is used in invert mode where product of inverse of the matrix with a vector 

is used. BiCGStab (Bi-Conjugate Gradient Stabilized) with preconditioner ILU(0)  is used 

to efficiently obtain this product.. During the iterations of Arnoldi method, the eigenvectors 

loose their orthogonality. To reinstate orthogonality, the Arnoldi steps are applied twice. 

Only the non-zero elements of the coefficient matrix are stored to reduce the memory 

requirement. IRAM provides the eigenvalues and reduced eigenvectors, containing only the 

horizontal components ex and ey. For each eigenvector, the ez components are then obtained 

by using the current divergence relation. These full eigenvectors are made sigma-

orthogonal. The eigenvalues and sigma-orthogonalized eigenvectors are next used to obtain 

the secondary electric field values. The primary electric field is already computed using 

layered earth model response. The total electric field values are obtained from primary and 

secondary electric field values. The total electric field values are used to derive the 

magnetic field. The electric field and magnetic field values are then used to compute 

impedance, apparent resistivity and phase values.  
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7.1 Conclusion 

The algorithms, MT_2D_EA and MT_3D_EA developed in this thesis, are efficient 

and reliable softwares respectively for 2D and 3D magnetotelluric modeling. The 

algorithms have been rigorously and comprehensively tested within the limited time frame 

of this study and under the severe constraint on size of the 3D problem imposed by 

capacity of the available computer facility. This limitation, however, led us to perform 

detailed study of the effect of coarse grid on the EM response. Numerous experiments were 

performed to test the consistency and accuracy of the algorithms. These tests justified a 

qualified faith in the algorithms MT_2D_EA and MT_3D_EA. The results of various 

design exercises and comparison of the computed responses of different models with 

published ones, lead us to following conclusions  

• The algorithm is able to model a complex structure. 

• The eigenmode computations consume bulk of the computer resources and 

time. However, these are to be performed only once, even when responses for 

numerous frequencies are to be computed. 

• Given the eigenmodes, the algorithm is capable of generating muti-frequency 

responses at a marginal cost. 

• For conductive target use of only 5% eigenmodes is sufficient while for 

resistive target one must use 20% eigenmodes. So, this algorithm, in its present 

form, works better for conductive targets. 

• In Garhwal Himalaya, the 3D geometry of the conductive block, buried under 

the Roorkee-Gangotri profile near MCT,  can be taken as 70 km strike, 20-26 

km width and 4 km depth and its resistivity is estimated as 8 Ω-m. However, the 



107 
 

detailed 3D study suggests that the conductive block can be approximated as a 

2D one. 

7.2 Limitations of the Algorithm 

The limitations of the algorithm identified during testing are as follows. 

• Presently, the manually generated grid is used in the algorithm. 

• The algorithm takes major time in eigenmode computation. 

• At the bottom of the modeling domain, perfectly conducting boundary condition 

is employed in the algorithm. This constraint forces one to take bottom at 

sufficient distance so that the tangential electric field will be zero at the domain 

boundary. 

• Presently the algorithm can be used only for the plane wave source. 

• The isotropic medium can be modeled using the algorithm. 

7.3 Suggestions for Future Work 

The present thesis has turned out to be an exploratory effort during which the 

computer programs MT_2D_EA and MT_3D_EA have been developed with an aim to 

enable quantitative interpretation of 3D MT data. The limitations listed above suggest that 

there exists a significant scope for further development. The limitations mentioned can be 

minimized by taking following steps. 

• Implementation of auto grid generator which employs the skin depth criterion. 

• Significant improvement can be made in the eigenmode evaluation, especially 

by using customized preconditioner in BiCGSTAB subprogram. 
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• Implementation of integral boundary condition at the bottom boundary of the 

domain. 

• The algorithm can be modified for the computation of responses in case of 

controlled source EM methods simply by replacing the present primary field 

response computation subprogram with one corresponding to the given EM 

source. 

• Inclusion of anisotropy. 

• Adaptation of the MT_3D_EA code for parallel programming. 

Finally, it may be stressed that after the code is adapted for parallel programming, 

the use of clusters of computers and supercomputers will significantly reduce the 

computational time and make it possible to undertake development of 3D MT data 

inversion algorithm. 

 



109 
 

APPENDIX A1 

INTERGRAL BOUNDARY CONDITION 

The electric field is not constant at the air earth interface. It is decaying in the air 

also. This effect is taken into account by applying, at the air-earth interface, the integral 

boundary condition which models the continuation of electric field up to large distances in 

air. The integral boundary condition is described below. 

A1.1 Integral Boundary Condition at the Air-Earth Interface 

 We are taking z +ve in downward direction. So, in the air, z is negative (z<0). In the 

air ( 0=σ ) Maxwell’s vector equations are reduced to 

BE &−=×∇ ,         (A1.1) 

0=×∇ B .         (A1.2) 

Taking divergence of equation (A1.1) we get 

   0=⋅∇ B& .         (A1.3) 

Further, equation (A1.2) permits the substitution 

 φ∇=B .         (A1.4) 

Equations (A1.3) and (A1.4) together yield 

02 =∇ φ .         (A1.5) 

The equation (A1.5) can be recast as 
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Assuming exponential z-dependence of ),,( zyxφ , it can be expressed as 
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 )exp(),(),,( zyxuzyx χφ = .       (A1.7) 

Substituting this relation into equation (A1.6) we get,  
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Let the plane at air-earth interface in discretized into nxy cells, the LHS of equation (A1.8) 

after use of finite differences, gets transformed to a matrix F which is symmetric and 

positive semi-definite. The discretized version of equation (A1.8) can be written as 

jjjF uu 2χ= ,  j = 1,nxy.       (A1.9) 

Here, uj is the eigenvector corresponding to the eigenvalue 2
jχ  of the coefficient matrix. 

Any vector can be expressed as linear superposition of orthogonal eigenvectors as 

 ∑=
j

jjc uu .        (A1.10) 

The coefficient cj’s can be evaluated using the known value of  zb&  at air-earth interface 

(z=0) which can be described as 

),()0( 2 yxuz jz χφ ==′′−=b&  ,        (A1.11) 

and 
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Using equations (A1.12) and (A1.10), the coefficient of superposition can be evaluated as 
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Finally, ),,( zyxφ can recast using (A1.7), (A1.10) and (A1.13) as 
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 This integral boundary condition relation (A1.14) provides the matrix coefficients 

due to electric field continuation in the air. Here, nxy is the number of horizontal electric 

field components at air-earth interface. 
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APPENDIX A2 

MATRIX COEFFICIENTS AND SIGMA 

ORTHONORMALIZATION 
The eigenmode algorithm, using FDM, is described in Chapter 3. The components 

of the electric field are described here along with the average volume and the average 

conductivity definitions. The 13 non-zero coefficient values for all the three electric field 

components are given. The eigenvectors are not simple orthogonal, rather these follow 

sigma orthogonality and its implementation in terms of a constant factor multiplication to 

the simply orthogonal eigenvector is discussed. 

A2.1 Matrix Coefficients 

The average conductivities xσ , yσ  and zσ associated with the points of cell (i, j, k),  

where ex, ey and ez components are evaluated, are given by the following relations, 
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------ (A2.1) 

Here, the volumes Vx, Vy and Vz are  

)()()(),,( kchjbhiakjiVx =  , 

)()()(),,( kchjbiahkjiVy = , 



 

114 
 

)()()(),,( kcjbhiahkjiVz = .        (A2.2) 

The matrix symmetry is conserved by the transformations 

),,(),,(),,(),,( 0 kjiekjikjiVkjie xxxx σµ= , 

),,(),,(),,(),,( 0 kjiekjikjiVkjie yyyy σµ= , 

),,(),,(),,(),,( 0 kjiekjikjiVkjie zzzz σµ= .    (A2.3) 

This transformation is valid only for points with non-zero ),,( kjixσ , ),,( kjiyσ  and 

),,( kjizσ . Using the abbreviations 

),,(),,(1),,( 0 kjikjiVkjid xxx σµ= , 

),,(),,(1),,( 0 kjikjiVkjid yyy σµ= , 

),,(),,(1),,( 0 kjikjiVkjid zzz σµ= ,     (A2.4) 

the system equations for the transformed electric components become 
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In the above equations the bold terms do not contribute in the first layer, bounded by air-

earth interface, and these are replaced with field continuation coefficients given by 

equation (A1.14) of Appendix A1. The complete system of equations can be represented as 

eeA λ= .         (A2.8) 

Here, A  matrix contains elements due to field continuation as well as due to FD 

approximation of equations (A2.5), (A2.6) and (A2.7). 

The ez components are replaced with the horizontal components using the current 

divergence relation (equation 3.19). This leads to a non-symmetric matrix as shown in 

Figure 3.5. Now the reduced system of equation can be written as 

eeAR
(( λ= ,          (A2.9) 

 where, AR denotes the reduced matrix and e(  denotes the reduced eigenvector 

having only horizontal components. These reduced eigenvectors, e( , are orthogonal. The full 

eigenvectors, ē, are now reconstructed from these reduced eigenvectors, e( , using the 

divergence relation again. These full eigenvectors are sigma-orthonormalized as discussed 

below. 

A2.2 Sigma Orthogonality of Eigenvectors 

The full eigenvectors, ē, are transformed, using equation (A2.3), into eigenvectors, 

e. These transformed eigenvectors must be σ-orthonormal as stated in Chapter 2. The σ-

orthonormality relation as described in equation (2.24) is 

∫ = nmrdr δσ 3ˆˆ)( mnee .        (A2.10) 

Let the final σ-orthogonal eigenvectors, nê , with weighted norm nη  be defined as 

)()(ˆ rr n nn ee η= .        (A2.11) 
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The orthogonality relation (A2.10) in discrete form can be written as 
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The norm factor nη  is obtained by applying weighted normalization as follows 
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Using the relation (A2.3), the eigenvectors ne  transformed into eigenvectors ne  , the norm 

factor simplifies to 
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assuming 1=ne .  

Thus, the eigenvectors nê  with weighted norm, which are needed for eigenmode synthesis, 

are determined directly from the orthonormal eigenvectors ne by 

).()()()(ˆ 0 rrdrr nnn eee µη ==       (A2.16) 
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APPENDIX A3 

ALGORITHM PARAMETERS AND SUBPROGRAMS 

The algorithm description is given in Chapter 4. The input data and other 

parameters are controlled by several counters. The details of these counters along with their 

default values and descriptions are presented in Table A3.1. The grid control parameters 

are given in Table A3.2. In Table A3.3, the list of subprograms is presented along with 

their purposes.  

 
Table A3.1: Description of control parameters. 
 

Parameter Controls Value Description 

irx Grid generation in 
x-direction 

 

0 
1 

Manual grid 
Logarithmic grid 

iry Grid generation in 
y-direction 

 

0 
1 

Manual grid 
Logarithmic grid 

irz Grid generation in z-
direction 

 

0 
1 

Manual grid 
Logarithmic grid 

irt No of time periods 
in decades 

0 
1 

Manual time period 
Logarithmic time 

period 
 

irun Generation of 
eigenmodes 

0 
 
1 

Generate 
eigenmodes 

Reused eigenmodes 
 

mode_type Response 
computation 

corresponding to 2D 

0 
 
1 

corresponding to 2D 
TE mode 

Corresponding to 
2D TM mode 

preconditioner Which 
preconditioner 

0 
1 
 
2 

No preconditioner 
9-diag 

precconditioner 
Block 

preconditioner 

Table A3.1 continues…… 
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restart Eigenmode 
computation 

 

0 
1 

All eigenmodes 
Desired Eigenmodes

 

Table A3.2: Grid parameters description. 

Parameter Description 

nx Number of cells in x-direction 
 

ny Number of cells in y-direction 
 

nz Number of cells in z-direction 
 

ne Number of ex + ey components 
 

nef Total number of unknowns (ex + ey + ez 
components) 

 
np 
 

Number of anomalous prisms 

nt 
 

Total number of time periods 

qx (irx.eq.1) Logarithmic grid control parameter in x-
direction 

 
qx (irx.eq.1) Logarithmic grid control parameter in y-

direction 
 

qx (irx.eq.1) Logarithmic grid control parameter in z-
direction 

 
tz (irt.eq.1) Logarithmic time distribution control 

parameter 
 

rho0 
 

Half space resistivity 

rho1,…np 
 

Anomalous resistivity  

ixa 
 

Starting cell number of anomalous prism in 
x-direction 

 
ixb 

 
Ending cell number of anomalous prism in 

x-direction 
 

Table A3.2 continues….. 

……Table A3.1 continued 
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iya 
 

Starting cell number of anomalous prism in 
y-direction 

 
iyb 

 
Ending cell number of anomalous prism in 

y-direction 
iza 

 
Starting cell number of anomalous prism in 

z-direction 
 

izb 
 

Ending cell number of anomalous prism in 
z-direction 

 
kev 

 
Number of eigenmodes to be calculated 

npv 
 

In restarting > kev 

Bicg_itmax 
 

Maximum number of iterations for 
BiCGStab convergence 

 
Lancz_tolr 

 
Threshold value for accurate eigenmodes 

during a subset computation 
 

 

Table A3.3: Various subprograms and their purpose. 

Subprogram  
 

Purpose  Called by Calls  

ae1 
 

Matrix-vector 
multiplication 

eigenstep, bicgstab fpres0, conti1, 
conti2, conti3, 

conti4 
ae1_reduced 

 
Multiplication of 
reduced elements 

with vector 
 

Precondi_3D ------ 

bicgstab 
 

To solve inverse of 
matrix 

eigenstep ae1, 
preconditioner_3D, 

block_pre, 
Precondi_3D 

CGS 
 

Block 
preconditioner 

block_pre local_pre 

conti1 
 

Integral boundary 
condition when x- 

and y- grids are non-
uniform 

ae1 tridi 

conti2 Integral Boundary ae1 tridi, fft 

……Table A3.2 continued 

Table A3.3 continues…… 
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 condition when x-is 
non-uniform and y- 

is uniform 
 

conti3 
 

Integral boundary 
condition when x-is 

uniform and Y-is 
non-uniform 

 

ae1 tridi, fft 

conti4 
 

Integral boundary 
condition when both 

x- and y- are 
uniform 

 

ae1 fft 

dlahqr 
 

Eigenmode 
computation of 3D 

 

eigenmode_3d ------ 

dnapps 
 

Updation of a subset 
of eigenmodes  

 

eigenmode_3d Adepted/taken from 
ARPACK 

eigenmode_1D Eigenmode 
computation for 1D 

layered structure 
 

Main Tridi 

eigenmode_3D Computing 3D 
eigenmodes 

Main dnapps, eigenstep, 
dlahqr, gramsmdt, 

get_ez 
eigenstep Generation of 

Heisenberg matrix 
and new starting 

vector   
 

eigenmode_3d ae1, bicgstab 

extremal 
 

Limits of 
eigenvalues 
computation 

 

Main ------ 

fft 
 

Forward/Inverse 
Fourier transform 

 

conit2, conti3, 
conti4 

------ 

fpres0 
 

Surface field 
computation 

 

ae1 printr 

get_ez 
 

Solving ez 
components of 

eigenvectors from 
reduced 

eigenmode_3d ------ 

……Table A3.3 continued 

Table A3.3 continues…… 
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eigenvectors 
 

gramsmdt 
 

Orthogonalization 
of new eigenvector 

with previous 
eigenvectors 

 

eigenmode_3d ------ 

grid 
 

Generation of 
logarithmic grid  

input  ------ 

init 
 

Initialization of 
starting vector 

 

Main ------ 

input  
 

Read input and 
control parameters 

 

Main grid, sigma0, 
sigma1, sigma2 

local_pre 
 

Local (block wise) CGS ------ 

method 
 

Identification of 
uniform or non-

uniform grid 
 

Main ------ 

output_1d 
 

Primary field 
computation 

 

Main ------ 

output_3d 
 

Total E-field, 
Impedance, 

Apparent resistivity 
and Phase  

computation for 3D 
 

Main  ------ 

Pre_1 
 

To multiply 
continuation 
element for 

preconditioning 
 

block_pre conti1, conti2, 
conti3, conti4 

Pre_2 Multiplication of 
Reduced 

components for 
preconditioning 

 

block_pre ------ 

Pre_3 
 

Multiplying each 
block with the 
vector element 

 

CGS ------ 

Pre_4 
 

Preconditioner 
element 

Pre_1 ------ 

……Table A3.3 continued 

Table A3.3 continues…… 
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Precondi_3D 
 

First 9-diagonal 
preconditioner the 
reduces element 

iteratively 
 

bicgstab Preconditioner_3D, 
ae1_reeduced 

Preconditioner_3D 
 

9-diag 
preconditioner 

 

bicgstab, Pre_3 ------ 

printi 
 

Print 3D integer 
array 

 

sigma0 ------ 

printr Print resistivity 3D 
array 

 
 

sigma1, sigma2 ------ 

sigma0 Defining half space 
resistivity to all 

nodes 
 

input printr 

sigma1 
 

Defining anomalous 
nodal resistivity 

values 
 

input printr  

sigma2 
 

Average resistivity 
computation 

 

input printr 

tridi 
 

Eigenmodes 
computation of 

Symmetric 
tridiagonal matrix 

 

conti1, conti2, 
conti3, 

eigenmode_1d 

------ 

weight 
 

Coefficient 
computation for ex, 

ey and ez 
components 

 

Main ------ 
 

weight_ez 
 

Coefficient 
corresponding to 

replacing ez into ex 
and ey components 

 

Main ------ 

 

 

……Table A3.3 continued 
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APPENDIX A4 

SAMPLE INPUT AND OUTPUT FILES 

 
Input.dat 

*** title (max 75 characters):  
  sfd: large horizontal grid  
*** grid:(1260+567) 
0                           !irx 
10                         !nx 
0. 
1000. 
1500. 
2000. 
2250. 
2500. 
2750. 
3000. 
3500. 
4000. 
5000.                       !x(nx+1) 
0                              !iry 
10                            !ny 
0. 
1000. 
1500. 
2000. 
2250. 
2500. 
2750. 
3000. 
3500. 
4000. 
5000.                     !y(ny+1) 
0                            !irz 
7                            !nz 
0. 
100. 
350. 
600. 
850. 
1100. 
1500. 
2500.                     !z(nz+1) 
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*** resistivity: 
1.0                                             !rho00 (half space resistivity) 
1                                                !np (number of anamalous prisms) 
0.1                                             !rho01 (resistivity of prisms) 
005 006 005 006 002 003         !ixa,ixb,iya,iyb,iza,izb 
9                                                !iws0 
0                                                !iws1 
0                                                !iws2 
*** time lags: 
0                                                !irt 
1                                                !nt 
1.0                                             !it 
*** error bounds 
1.0E-16                                     !lancz_tolr 
14000                                        !bicg_itmax 
1.0E-06                                     !bicg_tol 
1.0E-16                                     !bicg_stol 
*** parameters controlling the Lanczos process: 
1                    !restart (0-> computing all eigenvalues, 1-> computing desired eigenvalues) 
0                    !preconditioner (0-> no pre, 1-> 9 diag pre, 2-> block pre) 
1300              !mmax 
1260,0           !kev,npv 
0                    !irun (0-> regenerate, 1-> reused eigenvectors) 
0                    !mode_type (1-> corresponds to 2D TE, 0-> 2D TM) 
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Output_main.dat 
 
*** title (max 75 characters):                                                   
   sfd: large horizontal grid                                                     
 *** grid:(1260+567)                                                              
 0                           !irx                                                  
 10                         !nx                                                   
 0.                                                                               
 1000.                                                                            
 1500.                                                                            
 2000.                                                                            
 2250.                                                                            
 2500.                                                                            
 2750.                                                                            
 3000.                                                                            
 3500.                                                                            
 4000.                                                                            
 5000.                    !x(nx+1)                                             
 0                           !iry                                                 
 10                         !ny                                                  
 0.                                                                               
 1000.                                                                            
 1500.                                                                            
 2000.                                                                            
 2250.                                                                            
 2500.                                                                            
 2750.                                                                            
 3000.                                                                            
 3500.                                                                            
 4000.                                                                            
 5000.                    !y(ny+1)                                                
 0                           !irz                                                
 7                           !nz                                                 
 0.                                                                               
 100.                                                                             
 350.                                                                             
 600.                                                                             
 850.                                                                             
 1100.                                                                            
 1500.                                                                            
 2500.                    !z(nz+1)                                                              
 *** resistivity:                                                                 
 1.0                                           !rho00 (half space resistivity)                     
 1                                              !np (number of anamalous prisms)                    
 0.1                                           !rho01 (resistivity of prisms)                      
 005 006 005 006 002 003       !ixa,ixb,iya,iyb,iza,izb                            
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 9                                              !iws0                                               
 0                                              !iws1                                               
 0                                              !iws2                                               
 *** time lags:                                                                   
 0                                              !irt                                                
 1                                              !nt                                                 
 1.0                                           !it                                                  
 *** error bounds                                                                 
 1.0E-16                                   !lancz_tolr                                         
 14000                                      !bicg_itmax                                        
 1.0E-06                                   !bicg_tol                                           
 1.0E-16                                   !bicg_stol                                         
 *** parameters controlling the Lanczos process:                                  
 1                             !restart (0-> computing all eigenvalues, 1-> comput 
 0                             !preconditioner (0-> no pre, 1-> 9 diag pre, 2-> bl 
 1300                       !mmax                                               
 1260,0                    !kev,npv                                             
 0                             !irun (0-> regenerate, 1-> reused eigenvectors)     
 0                             !mode_type (1-> corresponds to 2D TE, 0-> 2D TM)    
                                                                                  
  sfd: large horizontal grid                                                
  
  nx= 10, tx= 5000.00, dxmin=   250.00 
    i      x(i)        a(i)           xc(i)       ah(i)  
    1         0.00  1000.00     500.00   1000.00 
    2   1000.00    500.00   1250.00     750.00 
    3   1500.00    500.00   1750.00     500.00 
    4   2000.00    250.00   2125.00     375.00 
    5   2250.00    250.00   2375.00     250.00 
    6   2500.00    250.00   2625.00     250.00 
    7   2750.00    250.00   2875.00     250.00 
    8   3000.00    500.00   3250.00     375.00 
    9   3500.00    500.00   3750.00     500.00 
  10   4000.00  1000.00   4500.00     750.00 
  11   5000.00                  1000.00 
  
  ny= 10, ty= 5000.00, dymin=   250.00 
    j      y(j)         b(j)          yc(j)        bh(j)  
    1         0.00  1000.00     500.00   1000.00 
    2   1000.00    500.00   1250.00     750.00 
    3   1500.00    500.00   1750.00     500.00 
    4   2000.00    250.00   2125.00     375.00 
    5   2250.00    250.00   2375.00     250.00 
    6   2500.00    250.00   2625.00     250.00 
    7   2750.00    250.00   2875.00     250.00 
    8   3000.00    500.00   3250.00    375.00 
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    9   3500.00    500.00   3750.00    500.00 
  10   4000.00  1000.00   4500.00    750.00 
  11   5000.00                  1000.00 
  
  nz=  7, tz= 2500.00, dzmin=   100.00 
    k       z(k)       c(k)         zc(k)       ch(k)  
    1         0.00    100.00       50.00    100.00 
    2     100.00    250.00     225.00    175.00 
    3     350.00    250.00     475.00    250.00 
    4     600.00    250.00     725.00    250.00 
    5     850.00    250.00     975.00    250.00 
    6   1100.00    400.00   1300.00    325.00 
    7   1500.00  1000.00   2000.00    700.00 
    8   2500.00                  1000.00 
  dhmin=  250.00, dmin=  100.00 
  
  background resistivity rho0=   1.0000E+00 Ohm*m 
  
  relative position of prisms: 
  ---------------------------  
   i  ixa  ixb  iya  iyb  iza  izb 
   1    5    6    5    6    2    3 
  
  resistivity and absolute position of prisms: 
  -------------------------------------------  
   i rho[Ohm*m]    xa[m]     xb[m]     ya[m]     yb[m]     za[m]     zb[m] 
   1    0.10000   2250.0    2750.0    2250.0    2750.0     100.0     600.0 
  
  iws0= 7: symbolic display of resistivity in the uppermost  7 levels 
  iws1=0: no display of resistivity 
  iws2=0: no display of averaged conductivity 
   smin=   1.000E+00 S/m, smax=   1.000E+01 S/m 
  is 
  --- 
   is - level  1: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  0  0  0  0  0  0 
    5    0  0  0  0  0  0  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
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   is - level  2: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  1  1  0  0  0  0 
    5    0  0  0  0  1  1  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  
   is - level  3: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  1  1  0  0  0  0 
    5    0  0  0  0  1  1  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  
   is - level  4: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  0  0  0  0  0  0 
    5    0  0  0  0  0  0  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  
   is - level  5: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
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    6    0  0  0  0  0  0  0  0  0  0 
    5    0  0  0  0  0  0  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  
   is - level  6: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  0  0  0  0  0  0 
    5    0  0  0  0  0  0  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  
   is - level  7: 
         1  2  3  4  5  6  7  8  9 10 
   10    0  0  0  0  0  0  0  0  0  0 
    9    0  0  0  0  0  0  0  0  0  0 
    8    0  0  0  0  0  0  0  0  0  0 
    7    0  0  0  0  0  0  0  0  0  0 
    6    0  0  0  0  0  0  0  0  0  0 
    5    0  0  0  0  0  0  0  0  0  0 
    4    0  0  0  0  0  0  0  0  0  0 
    3    0  0  0  0  0  0  0  0  0  0 
    2    0  0  0  0  0  0  0  0  0  0 
    1    0  0  0  0  0  0  0  0  0  0 
  explanation: 
    0: rho=      1.00 Ohm*m 
    1: rho=      0.10 Ohm*m 
   time lags and extremal diffusion lengths: 
  ----------------------------------------  
  it       t[s]   d_min[m]   d_max[m]   d_bgr[m] 
   1  1.000E+00  2.821E+02  8.921E+02  8.921E+02 
  bgr=background 
   convergence check after mstep=1260 iterations 
  alphmin= 7.8540E-03, alphmax= 1.6000E+02 
  meth=1: no-fft grid in x- and y-direction 
  1D eigenvalues: no., value 
      1  6.95E+01     2  4.33E+01     3  2.75E+01     4  1.34E+01     5  5.13E+00  
      6  1.15E+00  
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Final eigenvalues of 3D problem 
  8.62E-01  8.62E-01  9.01E-01  1.25E+00  1.74E+00  1.74E+00  1.87E+00  1.87E+00  2.19E+00    2.19E+00 
  2.60E+00  3.09E+00  3.12E+00  3.13E+00  3.24E+00  3.24E+00  3.25E+00  3.35E+00  3.35E+00  3.65E+00 
  3.65E+00  3.82E+00  3.97E+00  3.97E+00  4.03E+00  4.03E+00  4.46E+00  4.46E+00  4.52E+00  4.54E+00 
  4.87E+00  4.87E+00  4.96E+00  5.30E+00  5.39E+00  5.48E+00  5.48E+00  5.49E+00  5.60E+00  5.79E+00 
  5.88E+00  5.94E+00  5.94E+00  5.94E+00  6.11E+00  6.11E+00  6.26E+00  6.26E+00  6.37E+00  6.38E+00 
  6.52E+00  6.52E+00  6.56E+00  6.83E+00  6.83E+00  6.96E+00  7.15E+00  7.15E+00  7.34E+00  7.64E+00 
  7.76E+00  7.76E+00  7.93E+00  7.93E+00  8.02E+00  8.19E+00  8.19E+00  8.36E+00  8.40E+00  8.45E+00 
  8.45E+00  8.69E+00  8.74E+00  8.74E+00  8.74E+00  8.78E+00  8.94E+00  8.99E+00  8.99E+00  9.06E+00 
  9.10E+00  9.15E+00  9.15E+00  9.22E+00  9.22E+00  9.40E+00  9.40E+00  9.80E+00  9.83E+00  9.83E+00 
  9.98E+00  1.00E+01  1.00E+01  1.01E+01  1.03E+01  1.03E+01  1.04E+01  1.05E+01  1.05E+01  1.06E+01 
  1.06E+01  1.06E+01  1.06E+01  1.08E+01  1.08E+01  1.08E+01  1.09E+01  1.09E+01  1.09E+01  1.10E+01 
  1.11E+01  1.11E+01  1.11E+01  1.11E+01  1.11E+01  1.12E+01  1.12E+01  1.13E+01  1.14E+01  1.14E+01 
  1.14E+01  1.15E+01  1.15E+01  1.15E+01  1.16E+01  1.16E+01  1.17E+01  1.17E+01  1.18E+01  1.18E+01 
  1.21E+01  1.21E+01  1.21E+01  1.22E+01  1.22E+01  1.23E+01  1.24E+01  1.24E+01  1.24E+01  1.25E+01 
  1.28E+01  1.28E+01  1.28E+01  1.29E+01  1.29E+01  1.30E+01  1.30E+01  1.30E+01  1.31E+01  1.31E+01 
  1.32E+01  1.32E+01  1.34E+01  1.36E+01  1.36E+01  1.37E+01  1.37E+01  1.37E+01  1.37E+01  1.38E+01 
  1.41E+01  1.41E+01  1.41E+01  1.41E+01  1.42E+01  1.43E+01  1.44E+01  1.44E+01  1.45E+01  1.46E+01 
  1.47E+01  1.47E+01  1.49E+01  1.49E+01  1.50E+01  1.53E+01  1.53E+01  1.54E+01  1.54E+01  1.54E+01 
  1.54E+01  1.54E+01  1.55E+01  1.55E+01  1.55E+01  1.56E+01  1.58E+01  1.59E+01  1.60E+01  1.60E+01 
  1.60E+01  1.60E+01  1.61E+01  1.65E+01  1.66E+01  1.66E+01  1.67E+01  1.67E+01  1.68E+01  1.70E+01 
  1.70E+01  1.73E+01  1.73E+01  1.74E+01  1.76E+01  1.76E+01  1.76E+01  1.78E+01  1.78E+01  1.78E+01 
  1.79E+01  1.80E+01  1.81E+01  1.81E+01  1.81E+01  1.83E+01  1.83E+01  1.83E+01  1.83E+01  1.83E+01 
  1.85E+01  1.85E+01  1.86E+01  1.87E+01  1.87E+01  1.87E+01  1.87E+01  1.88E+01  1.88E+01  1.88E+01 
  1.88E+01  1.90E+01  1.90E+01  1.91E+01  1.91E+01  1.92E+01  1.93E+01  1.94E+01  1.94E+01  1.96E+01 
  1.96E+01  1.98E+01  1.98E+01  1.98E+01  1.99E+01  2.01E+01  2.01E+01  2.02E+01  2.02E+01  2.02E+01 
  2.03E+01  2.05E+01  2.05E+01  2.05E+01  2.07E+01  2.07E+01  2.08E+01  2.08E+01  2.09E+01  2.09E+01 
  2.09E+01  2.09E+01  2.10E+01  2.10E+01  2.11E+01  2.11E+01  2.12E+01  2.12E+01  2.12E+01  2.13E+01 
  2.13E+01  2.13E+01  2.14E+01  2.14E+01  2.14E+01  2.14E+01  2.15E+01  2.16E+01  2.17E+01  2.17E+01 
  2.19E+01  2.19E+01  2.19E+01  2.19E+01  2.20E+01  2.20E+01  2.22E+01  2.22E+01  2.22E+01  2.23E+01 
  2.23E+01  2.24E+01  2.25E+01  2.25E+01  2.26E+01  2.27E+01  2.27E+01  2.28E+01  2.29E+01  2.29E+01 
  2.31E+01  2.31E+01  2.31E+01  2.32E+01  2.32E+01  2.34E+01  2.35E+01  2.35E+01  2.37E+01  2.37E+01 
  2.37E+01  2.37E+01  2.37E+01  2.38E+01  2.38E+01  2.39E+01  2.39E+01  2.39E+01  2.40E+01  2.42E+01 
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  2.44E+01  2.44E+01  2.46E+01  2.46E+01  2.46E+01  2.51E+01  2.51E+01  2.51E+01  2.54E+01  2.54E+01 
  2.54E+01  2.54E+01  2.54E+01  2.55E+01  2.62E+01  2.63E+01  2.63E+01  2.64E+01  2.64E+01  2.64E+01 
  2.64E+01  2.65E+01  2.65E+01  2.67E+01  2.67E+01  2.67E+01  2.67E+01  2.68E+01  2.68E+01  2.70E+01 
  2.70E+01  2.70E+01  2.71E+01  2.73E+01  2.74E+01  2.74E+01  2.77E+01  2.77E+01  2.79E+01  2.79E+01 
  2.79E+01  2.80E+01  2.80E+01  2.82E+01  2.85E+01  2.85E+01  2.85E+01  2.87E+01  2.87E+01  2.87E+01 
  2.89E+01  2.90E+01  2.90E+01  2.91E+01  2.91E+01  2.92E+01  2.93E+01  2.93E+01  2.94E+01  2.94E+01 
  2.96E+01  2.96E+01  2.96E+01  2.96E+01  2.97E+01  2.97E+01  2.97E+01  2.99E+01  2.99E+01  3.01E+01 
  3.01E+01  3.04E+01  3.04E+01  3.04E+01  3.06E+01  3.08E+01  3.08E+01  3.12E+01  3.12E+01  3.12E+01 
  3.13E+01  3.17E+01  3.17E+01  3.18E+01  3.18E+01  3.20E+01  3.20E+01  3.20E+01  3.23E+01  3.23E+01 
  3.23E+01  3.24E+01  3.26E+01  3.26E+01  3.26E+01  3.27E+01  3.27E+01  3.28E+01  3.29E+01  3.29E+01 
  3.29E+01  3.29E+01  3.30E+01  3.32E+01  3.36E+01  3.36E+01  3.36E+01  3.37E+01  3.40E+01  3.40E+01 
  3.42E+01  3.42E+01  3.42E+01  3.42E+01  3.43E+01  3.43E+01  3.44E+01  3.45E+01  3.46E+01  3.46E+01 
  3.47E+01  3.49E+01  3.49E+01  3.49E+01  3.50E+01  3.51E+01  3.51E+01  3.52E+01  3.53E+01  3.53E+01 
  3.54E+01  3.54E+01  3.54E+01  3.55E+01  3.56E+01  3.57E+01  3.58E+01  3.59E+01  3.60E+01  3.60E+01 
  3.61E+01  3.62E+01  3.62E+01  3.62E+01  3.62E+01  3.64E+01  3.64E+01  3.64E+01  3.65E+01  3.66E+01 
  3.67E+01  3.67E+01  3.67E+01  3.67E+01  3.69E+01  3.71E+01  3.71E+01  3.71E+01  3.73E+01  3.73E+01 
  3.73E+01  3.73E+01  3.73E+01  3.75E+01  3.75E+01  3.78E+01  3.78E+01  3.78E+01  3.78E+01  3.78E+01 
  3.81E+01  3.81E+01  3.83E+01  3.84E+01  3.84E+01  3.87E+01  3.87E+01  3.87E+01  3.89E+01  3.89E+01 
  3.89E+01  3.90E+01  3.90E+01  3.90E+01  3.90E+01  3.93E+01  3.95E+01  3.95E+01  3.95E+01  3.95E+01 
  3.96E+01  3.97E+01  3.99E+01  4.00E+01  4.00E+01  4.01E+01  4.01E+01  4.04E+01  4.06E+01  4.06E+01 
  4.07E+01  4.07E+01  4.08E+01  4.08E+01  4.08E+01  4.08E+01  4.11E+01  4.12E+01  4.12E+01  4.12E+01 
  4.12E+01  4.12E+01  4.13E+01  4.14E+01  4.14E+01  4.15E+01  4.15E+01  4.17E+01  4.17E+01  4.19E+01 
  4.20E+01  4.20E+01  4.20E+01  4.21E+01  4.21E+01  4.23E+01  4.23E+01  4.23E+01  4.26E+01  4.27E+01 
  4.29E+01  4.29E+01  4.29E+01  4.32E+01  4.32E+01  4.33E+01  4.33E+01  4.34E+01  4.35E+01  4.35E+01 
  4.35E+01  4.37E+01  4.37E+01  4.37E+01  4.37E+01  4.37E+01  4.38E+01  4.38E+01  4.38E+01  4.42E+01 
  4.42E+01  4.42E+01  4.43E+01  4.43E+01  4.46E+01  4.47E+01  4.47E+01  4.48E+01  4.48E+01  4.49E+01 
  4.52E+01  4.52E+01  4.54E+01  4.54E+01  4.54E+01  4.54E+01  4.58E+01  4.59E+01  4.59E+01  4.59E+01 
  4.61E+01  4.61E+01  4.61E+01  4.62E+01  4.62E+01  4.62E+01  4.64E+01  4.64E+01  4.64E+01  4.64E+01 
  4.65E+01  4.66E+01  4.67E+01  4.67E+01  4.67E+01  4.67E+01  4.67E+01  4.67E+01  4.68E+01  4.68E+01 
  4.68E+01  4.68E+01  4.70E+01  4.70E+01  4.70E+01  4.74E+01  4.74E+01  4.74E+01  4.74E+01  4.74E+01 
  4.75E+01  4.77E+01  4.77E+01  4.79E+01  4.79E+01  4.79E+01  4.79E+01  4.79E+01  4.81E+01  4.81E+01 
  4.81E+01  4.81E+01  4.82E+01  4.85E+01  4.85E+01  4.85E+01  4.86E+01  4.87E+01  4.87E+01  4.87E+01 
  4.88E+01  4.88E+01  4.88E+01  4.89E+01  4.89E+01  4.89E+01  4.90E+01  4.90E+01  4.91E+01  4.91E+01 
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  4.92E+01  4.92E+01  4.93E+01  4.93E+01  4.93E+01  4.93E+01  4.96E+01  4.96E+01  4.97E+01  4.97E+01 
  4.98E+01  4.98E+01  5.01E+01  5.01E+01  5.01E+01  5.02E+01  5.02E+01  5.03E+01  5.03E+01  5.05E+01 
  5.05E+01  5.06E+01  5.06E+01  5.06E+01  5.07E+01  5.09E+01  5.09E+01  5.10E+01  5.11E+01  5.11E+01 
  5.12E+01  5.12E+01  5.14E+01  5.14E+01  5.15E+01  5.15E+01  5.16E+01  5.16E+01  5.16E+01  5.16E+01 
  5.17E+01  5.18E+01  5.18E+01  5.19E+01  5.19E+01  5.20E+01  5.20E+01  5.20E+01  5.21E+01  5.21E+01 
  5.21E+01  5.23E+01  5.23E+01  5.24E+01  5.24E+01  5.24E+01  5.27E+01  5.27E+01  5.28E+01  5.29E+01 
  5.30E+01  5.30E+01  5.30E+01  5.32E+01  5.32E+01  5.32E+01  5.33E+01  5.33E+01  5.36E+01  5.36E+01 
  5.36E+01  5.38E+01  5.39E+01  5.39E+01  5.39E+01  5.41E+01  5.41E+01  5.44E+01  5.44E+01  5.44E+01 
  5.45E+01  5.45E+01  5.47E+01  5.47E+01  5.48E+01  5.49E+01  5.49E+01  5.50E+01  5.50E+01  5.50E+01 
  5.50E+01  5.51E+01  5.51E+01  5.51E+01  5.52E+01  5.52E+01  5.54E+01  5.54E+01  5.55E+01  5.56E+01 
  5.56E+01  5.57E+01  5.57E+01  5.57E+01  5.57E+01  5.57E+01  5.58E+01  5.58E+01  5.59E+01  5.59E+01 
  5.60E+01  5.60E+01  5.60E+01  5.60E+01  5.61E+01  5.61E+01  5.62E+01  5.62E+01  5.62E+01  5.68E+01 
  5.69E+01  5.69E+01  5.70E+01  5.70E+01  5.72E+01  5.72E+01  5.73E+01  5.73E+01  5.74E+01  5.74E+01 
  5.75E+01  5.75E+01  5.75E+01  5.75E+01  5.75E+01  5.75E+01  5.76E+01  5.77E+01  5.77E+01  5.78E+01 
  5.78E+01  5.78E+01  5.79E+01  5.79E+01  5.79E+01  5.79E+01  5.80E+01  5.83E+01  5.83E+01  5.84E+01 
  5.84E+01  5.84E+01  5.85E+01  5.86E+01  5.86E+01  5.86E+01  5.86E+01  5.91E+01  5.92E+01  5.92E+01 
  5.93E+01  5.93E+01  5.96E+01  5.96E+01  5.97E+01  5.97E+01  5.97E+01  5.98E+01  5.99E+01  5.99E+01 
  6.00E+01  6.00E+01  6.02E+01  6.02E+01  6.07E+01  6.08E+01  6.11E+01  6.11E+01  6.14E+01  6.14E+01 
  6.16E+01  6.16E+01  6.17E+01  6.17E+01  6.17E+01  6.19E+01  6.22E+01  6.27E+01  6.27E+01  6.27E+01 
  6.28E+01  6.28E+01  6.30E+01  6.32E+01  6.32E+01  6.35E+01  6.35E+01  6.35E+01  6.36E+01  6.36E+01 
  6.39E+01  6.43E+01  6.43E+01  6.43E+01  6.43E+01  6.44E+01  6.46E+01  6.46E+01  6.47E+01  6.48E+01 
  6.48E+01  6.49E+01  6.49E+01  6.51E+01  6.54E+01  6.54E+01  6.54E+01  6.54E+01  6.55E+01  6.56E+01 
  6.56E+01  6.56E+01  6.56E+01  6.56E+01  6.57E+01  6.58E+01  6.59E+01  6.60E+01  6.60E+01  6.60E+01 
  6.61E+01  6.61E+01  6.61E+01  6.63E+01  6.63E+01  6.66E+01  6.67E+01  6.69E+01  6.70E+01  6.70E+01 
  6.77E+01  6.77E+01  6.78E+01  6.78E+01  6.81E+01  6.81E+01  6.85E+01  6.87E+01  6.87E+01  6.93E+01 
  6.96E+01  6.97E+01  6.97E+01  6.97E+01  7.00E+01  7.01E+01  7.01E+01  7.02E+01  7.02E+01  7.02E+01 
  7.03E+01  7.03E+01  7.04E+01  7.04E+01  7.05E+01  7.06E+01  7.09E+01  7.09E+01  7.09E+01  7.09E+01 
  7.10E+01  7.11E+01  7.13E+01  7.13E+01  7.16E+01  7.19E+01  7.24E+01  7.25E+01  7.25E+01  7.26E+01 
  7.28E+01  7.29E+01  7.29E+01  7.29E+01  7.30E+01  7.31E+01  7.31E+01  7.31E+01  7.34E+01  7.38E+01 
  7.43E+01  7.46E+01  7.46E+01  7.51E+01  7.52E+01  7.52E+01  7.58E+01  7.58E+01  7.60E+01  7.67E+01 
  7.72E+01  7.72E+01  7.75E+01  7.75E+01  7.78E+01  7.79E+01  7.79E+01  7.79E+01  7.82E+01  7.84E+01 
  7.85E+01  7.87E+01  7.87E+01  7.89E+01  7.89E+01  7.92E+01  7.93E+01  7.97E+01  7.98E+01  7.99E+01 
  7.99E+01  8.00E+01  8.03E+01  8.03E+01  8.05E+01  8.05E+01  8.06E+01  8.08E+01  8.08E+01  8.08E+01 



 135

  8.12E+01  8.12E+01  8.17E+01  8.20E+01  8.21E+01  8.21E+01  8.23E+01  8.31E+01  8.31E+01  8.31E+01 
  8.37E+01  8.37E+01  8.37E+01  8.39E+01  8.40E+01  8.44E+01  8.44E+01  8.46E+01  8.46E+01  8.46E+01 
  8.50E+01  8.50E+01  8.52E+01  8.52E+01  8.52E+01  8.60E+01  8.60E+01  8.66E+01  8.66E+01  8.69E+01 
  8.69E+01  8.71E+01  8.73E+01  8.76E+01  8.83E+01  8.83E+01  8.90E+01  8.94E+01  8.94E+01  9.03E+01 
  9.05E+01  9.05E+01  9.06E+01  9.06E+01  9.08E+01  9.12E+01  9.24E+01  9.24E+01  9.24E+01  9.25E+01 
  9.26E+01  9.28E+01  9.28E+01  9.29E+01  9.30E+01  9.31E+01  9.31E+01  9.43E+01  9.44E+01  9.44E+01 
  9.47E+01  9.51E+01  9.53E+01  9.53E+01  9.56E+01  9.61E+01  9.68E+01  9.68E+01  9.74E+01  9.77E+01 
  9.77E+01  9.78E+01  9.80E+01  9.81E+01  9.81E+01  9.90E+01  9.95E+01  1.00E+02  1.00E+02  1.03E+02 
  1.03E+02  1.03E+02  1.03E+02  1.03E+02  1.03E+02  1.03E+02  1.04E+02  1.06E+02  1.07E+02  1.07E+02 
  1.09E+02  1.10E+02  1.10E+02  1.14E+02  1.14E+02  1.16E+02  1.17E+02  1.17E+02  1.25E+02  1.26E+02 
  1.96E+02  1.96E+02  2.08E+02  2.10E+02  2.11E+02  2.12E+02  2.12E+02  2.12E+02  2.13E+02  2.13E+02 
  2.13E+02  2.13E+02  2.15E+02  2.15E+02  2.15E+02  2.16E+02  2.16E+02  2.17E+02  2.17E+02  2.17E+02 
  2.18E+02  2.18E+02  2.18E+02  2.19E+02  2.19E+02  2.19E+02  2.20E+02  2.20E+02  2.20E+02  2.21E+02 
  2.21E+02  2.21E+02  2.21E+02  2.22E+02  2.22E+02  2.22E+02  2.24E+02  2.25E+02  2.25E+02  2.25E+02 
  2.26E+02  2.26E+02  2.27E+02  2.27E+02  2.27E+02  2.27E+02  2.28E+02  2.28E+02  2.29E+02  2.29E+02 
  2.29E+02  2.32E+02  2.32E+02  2.33E+02  2.33E+02  2.34E+02  2.35E+02  2.35E+02  2.35E+02  2.35E+02 
  2.37E+02  2.37E+02  2.37E+02  2.38E+02  2.39E+02  2.40E+02  2.40E+02  2.42E+02  2.42E+02  2.42E+02 
  2.43E+02  2.45E+02  2.45E+02  2.45E+02  2.45E+02  2.46E+02  2.46E+02  2.46E+02  2.46E+02  2.46E+02 
  2.48E+02  2.48E+02  2.48E+02  2.49E+02  2.50E+02  2.51E+02  2.53E+02  2.55E+02  2.55E+02  2.56E+02 
  2.56E+02  2.56E+02  2.56E+02  2.56E+02  2.57E+02  2.58E+02  2.58E+02  2.58E+02  2.58E+02  2.60E+02 
  2.60E+02  2.61E+02  2.62E+02  2.62E+02  2.62E+02  2.63E+02  2.64E+02  2.65E+02  2.65E+02  2.66E+02 
  2.66E+02  2.66E+02  2.67E+02  2.68E+02  2.69E+02  2.70E+02  2.73E+02  2.73E+02  2.74E+02  2.74E+02 
  2.76E+02  2.76E+02  2.80E+02  2.80E+02  2.81E+02  2.82E+02  2.87E+02  2.87E+02  2.89E+02  2.89E+02 
  2.89E+02  2.89E+02  2.90E+02  2.90E+02  2.95E+02  2.95E+02  2.96E+02  3.01E+02  3.01E+02  3.09E+02 
  3.10E+02  3.15E+02  3.15E+02  3.20E+02  3.23E+02  3.27E+02  3.27E+02  3.28E+02  3.28E+02  3.33E+02 
  3.33E+02  3.33E+02  3.36E+02  3.37E+02  3.45E+02  3.45E+02  3.50E+02  3.51E+02  3.52E+02  3.52E+02 
  3.61E+02  3.61E+02  3.62E+02  3.62E+02  3.66E+02  3.66E+02  3.66E+02  3.66E+02  3.70E+02  3.70E+02 
  3.78E+02  3.78E+02  3.83E+02  3.83E+02  3.94E+02  3.98E+02  3.98E+02  4.26E+02  4.26E+02  4.50E+02 
  time period=   1.00000000000000      



output_response.dat
one-dimenprimary model fields:
no. z-coord e-field h-field

2 1.00E+02 8.07E-01 -1.70E-01 1.46E+02 -2.84E+02
3 3.50E+02 3.83E-01 -3.18E-01 3.15E+01 -2.06E+02
4 6.00E+02 1.16E-01 -2.76E-01 -3.56E+01 -1.01E+02
5 8.50E+02 -1.48E-02 -1.77E-01 -4.83E+01 -4.41E+01
6 1.10E+03 -5.81E-02 -8.56E-02 -3.93E+01 -5.45E+00
7 1.50E+03 -3.95E-02 1.26E-03 -3.39E+01 7.24E+00

number of cells in x-direction: nx= 10
number of cells in y-direction: ny= 10
number of cells in z-direction: nz= 7
reduced matrix size= 1260
number of desired eigenmodes: kev= 1260
mode_typ e= 1 1

**** VALUES AT THE SURFACE ****

** output with x/y varying along row/col **

* Re(Ex) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....Re(Ex)-values....

1 1.00E+03 9.94E-01 9.90E-01 9.93E-01 9.93E-01 9.94E-01 9.94E-01 9.93E-01 9.93E-01 9.89E-01 9.94E-01
2 1.50E+03 9.91E-01 9.88E-01 9.86E-01 9.85E-01 9.85E-01 9.85E-01 9.85E-01 9.86E-01 9.87E-01 9.90E-01
3 2.00E+03 9.88E-01 9.82E-01 9.77E-01 9.65E-01 9.71E-01 9.71E-01 9.64E-01 9.77E-01 9.82E-01 9.88E-01
4 2.25E+03 9.87E-01 9.81E-01 9.69E-01 9.36E-01 9.69E-01 9.69E-01 9.36E-01 9.69E-01 9.81E-01 9.87E-01
5 2.50E+03 9.87E-01 9.82E-01 9.66E-01 9.27E-01 9.60E-01 9.60E-01 9.27E-01 9.66E-01 9.82E-01 9.87E-01
6 2.75E+03 9.87E-01 9.81E-01 9.69E-01 9.36E-01 9.69E-01 9.69E-01 9.36E-01 9.69E-01 9.81E-01 9.87E-01
7 3.00E+03 9.88E-01 9.82E-01 9.77E-01 9.64E-01 9.71E-01 9.71E-01 9.65E-01 9.77E-01 9.82E-01 9.88E-01
8 3.50E+03 9.90E-01 9.87E-01 9.86E-01 9.85E-01 9.85E-01 9.85E-01 9.85E-01 9.86E-01 9.88E-01 9.91E-01
9 4.00E+03 9.94E-01 9.89E-01 9.93E-01 9.93E-01 9.94E-01 9.94E-01 9.93E-01 9.93E-01 9.91E-01 9.94E-01

* Im(Ex) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
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x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord .....Im(Ex)-values.....

1 1.00E+03 -1.65E-01 -1.72E-01 -1.72E-01 -1.73E-01 -1.71E-01 -1.71E-01 -1.72E-01 -1.71E-01 -1.73E-01 -1.64E-01
2 1.50E+03 -1.68E-01 -1.68E-01 -1.68E-01 -1.70E-01 -1.72E-01 -1.72E-01 -1.70E-01 -1.67E-01 -1.69E-01 -1.68E-01
3 2.00E+03 -1.71E-01 -1.70E-01 -1.63E-01 -1.74E-01 -1.83E-01 -1.83E-01 -1.74E-01 -1.63E-01 -1.70E-01 -1.71E-01
4 2.25E+03 -1.73E-01 -1.67E-01 -1.64E-01 -1.87E-01 -2.35E-01 -2.36E-01 -1.87E-01 -1.64E-01 -1.67E-01 -1.73E-01
5 2.50E+03 -1.73E-01 -1.63E-01 -1.63E-01 -1.90E-01 -2.53E-01 -2.53E-01 -1.90E-01 -1.63E-01 -1.63E-01 -1.73E-01
6 2.75E+03 -1.73E-01 -1.67E-01 -1.64E-01 -1.87E-01 -2.36E-01 -2.35E-01 -1.87E-01 -1.64E-01 -1.67E-01 -1.73E-01
7 3.00E+03 -1.71E-01 -1.70E-01 -1.63E-01 -1.74E-01 -1.83E-01 -1.83E-01 -1.74E-01 -1.63E-01 -1.70E-01 -1.71E-01
8 3.50E+03 -1.68E-01 -1.69E-01 -1.67E-01 -1.70E-01 -1.72E-01 -1.72E-01 -1.70E-01 -1.68E-01 -1.68E-01 -1.68E-01
9 4.00E+03 -1.64E-01 -1.73E-01 -1.71E-01 -1.72E-01 -1.71E-01 -1.71E-01 -1.73E-01 -1.72E-01 -1.72E-01 -1.65E-01

* Re(Hy) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....Re(Hx)-values....

1 1.25E+03 1.75E+02 1.76E+02 1.76E+02 1.76E+02 1.75E+02 1.75E+02 1.76E+02 1.76E+02 1.76E+02 1.75E+02
2 1.75E+03 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02
3 2.12E+03 1.76E+02 1.76E+02 1.73E+02 1.72E+02 1.72E+02 1.72E+02 1.72E+02 1.73E+02 1.75E+02 1.76E+02
4 2.38E+03 1.76E+02 1.75E+02 1.73E+02 1.76E+02 1.86E+02 1.87E+02 1.76E+02 1.73E+02 1.75E+02 1.76E+02
5 2.62E+03 1.76E+02 1.74E+02 1.73E+02 1.73E+02 1.86E+02 1.86E+02 1.73E+02 1.73E+02 1.74E+02 1.76E+02
6 2.88E+03 1.76E+02 1.75E+02 1.73E+02 1.76E+02 1.87E+02 1.86E+02 1.76E+02 1.73E+02 1.75E+02 1.76E+02
7 3.25E+03 1.76E+02 1.75E+02 1.73E+02 1.72E+02 1.72E+02 1.72E+02 1.72E+02 1.73E+02 1.76E+02 1.76E+02
8 3.75E+03 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02 1.75E+02
9 4.50E+03 1.75E+02 1.76E+02 1.76E+02 1.76E+02 1.75E+02 1.75E+02 1.76E+02 1.76E+02 1.76E+02 1.75E+02

* Im(Hy) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....Im(Hx)-values....

1 1.25E+03 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02
2 1.75E+03 -2.37E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.37E+02
3 2.12E+03 -2.36E+02 -2.38E+02 -2.38E+02 -2.35E+02 -2.32E+02 -2.32E+02 -2.35E+02 -2.38E+02 -2.38E+02 -2.36E+02
4 2.38E+03 -2.36E+02 -2.38E+02 -2.40E+02 -2.48E+02 -2.32E+02 -2.32E+02 -2.48E+02 -2.40E+02 -2.38E+02 -2.36E+02
5 2.62E+03 -2.36E+02 -2.37E+02 -2.40E+02 -2.56E+02 -2.31E+02 -2.31E+02 -2.56E+02 -2.40E+02 -2.37E+02 -2.36E+02
6 2.88E+03 -2.36E+02 -2.38E+02 -2.40E+02 -2.48E+02 -2.32E+02 -2.32E+02 -2.48E+02 -2.40E+02 -2.38E+02 -2.36E+02
7 3.25E+03 -2.36E+02 -2.38E+02 -2.38E+02 -2.35E+02 -2.32E+02 -2.32E+02 -2.35E+02 -2.38E+02 -2.38E+02 -2.36E+02
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8 3.75E+03 -2.37E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.37E+02
9 4.50E+03 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.36E+02 -2.35E+02 -2.36E+02 -2.35E+02 -2.36E+02

* Re(Zxy) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....Re(Zxy)-values....

1 1.00E+03 2.07E-03 2.09E-03 2.09E-03 2.10E-03 2.10E-03 2.10E-03 2.10E-03 2.09E-03 2.10E-03 2.07E-03
2 1.50E+03 2.07E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.07E-03
3 2.00E+03 2.08E-03 2.04E-03 2.01E-03 2.04E-03 2.11E-03 2.11E-03 2.04E-03 2.01E-03 2.04E-03 2.08E-03
4 2.25E+03 2.08E-03 2.04E-03 1.98E-03 1.90E-03 2.23E-03 2.24E-03 1.90E-03 1.98E-03 2.04E-03 2.08E-03
5 2.50E+03 2.08E-03 2.04E-03 1.97E-03 1.82E-03 2.26E-03 2.26E-03 1.82E-03 1.97E-03 2.04E-03 2.08E-03
6 2.75E+03 2.08E-03 2.04E-03 1.98E-03 1.90E-03 2.24E-03 2.23E-03 1.90E-03 1.98E-03 2.04E-03 2.08E-03
7 3.00E+03 2.08E-03 2.04E-03 2.01E-03 2.04E-03 2.11E-03 2.11E-03 2.04E-03 2.01E-03 2.04E-03 2.08E-03
8 3.50E+03 2.07E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.08E-03 2.07E-03 2.07E-03 2.08E-03 2.07E-03
9 4.00E+03 2.07E-03 2.10E-03 2.09E-03 2.10E-03 2.10E-03 2.10E-03 2.10E-03 2.09E-03 2.09E-03 2.07E-03

* Im(Zxy) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....Im(Zxy)-values....

1 1.00E+03 1.86E-03 1.83E-03 1.83E-03 1.83E-03 1.84E-03 1.84E-03 1.83E-03 1.83E-03 1.82E-03 1.86E-03
2 1.50E+03 1.83E-03 1.83E-03 1.83E-03 1.82E-03 1.82E-03 1.82E-03 1.83E-03 1.83E-03 1.83E-03 1.83E-03
3 2.00E+03 1.82E-03 1.80E-03 1.82E-03 1.78E-03 1.79E-03 1.79E-03 1.78E-03 1.82E-03 1.80E-03 1.82E-03
4 2.25E+03 1.81E-03 1.81E-03 1.80E-03 1.61E-03 1.52E-03 1.52E-03 1.61E-03 1.80E-03 1.81E-03 1.81E-03
5 2.50E+03 1.81E-03 1.84E-03 1.79E-03 1.59E-03 1.44E-03 1.44E-03 1.59E-03 1.79E-03 1.84E-03 1.81E-03
6 2.75E+03 1.81E-03 1.81E-03 1.80E-03 1.61E-03 1.52E-03 1.52E-03 1.61E-03 1.80E-03 1.81E-03 1.81E-03
7 3.00E+03 1.82E-03 1.80E-03 1.82E-03 1.78E-03 1.79E-03 1.79E-03 1.78E-03 1.82E-03 1.80E-03 1.82E-03
8 3.50E+03 1.83E-03 1.83E-03 1.83E-03 1.83E-03 1.82E-03 1.82E-03 1.82E-03 1.83E-03 1.83E-03 1.83E-03
9 4.00E+03 1.86E-03 1.82E-03 1.83E-03 1.83E-03 1.84E-03 1.84E-03 1.83E-03 1.83E-03 1.83E-03 1.86E-03

* (RHOxy) : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....(RHOxy)-values....

1 1.00E+03 9.83E-01 9.78E-01 9.79E-01 9.82E-01 9.86E-01 9.86E-01 9.82E-01 9.78E-01 9.76E-01 9.81E-01
2 1.50E+03 9.68E-01 9.73E-01 9.64E-01 9.66E-01 9.67E-01 9.67E-01 9.65E-01 9.64E-01 9.71E-01 9.67E-01
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3 2.00E+03 9.65E-01 9.41E-01 9.34E-01 9.31E-01 9.70E-01 9.70E-01 9.31E-01 9.34E-01 9.41E-01 9.64E-01
4 2.25E+03 9.62E-01 9.40E-01 9.05E-01 7.87E-01 9.26E-01 9.24E-01 7.87E-01 9.05E-01 9.41E-01 9.62E-01
5 2.50E+03 9.62E-01 9.54E-01 9.00E-01 7.42E-01 9.07E-01 9.07E-01 7.42E-01 9.00E-01 9.54E-01 9.62E-01
6 2.75E+03 9.62E-01 9.41E-01 9.05E-01 7.87E-01 9.24E-01 9.26E-01 7.87E-01 9.05E-01 9.40E-01 9.62E-01
7 3.00E+03 9.64E-01 9.41E-01 9.34E-01 9.31E-01 9.70E-01 9.70E-01 9.31E-01 9.34E-01 9.41E-01 9.65E-01
8 3.50E+03 9.67E-01 9.71E-01 9.64E-01 9.65E-01 9.67E-01 9.67E-01 9.66E-01 9.64E-01 9.73E-01 9.68E-01
9 4.00E+03 9.81E-01 9.76E-01 9.78E-01 9.82E-01 9.86E-01 9.86E-01 9.82E-01 9.79E-01 9.78E-01 9.83E-01

* PHASExy : *
x-node nos.: 1 2 3 4 5 6 7 8 9 10
x-coord values: 5.00E+02 1.25E+03 1.75E+03 2.12E+03 2.38E+03 2.62E+03 2.88E+03 3.25E+03 3.75E+03 4.50E+03
iy y-coord ....PHASExy-values....

1 1.00E+03 4.19E+01 4.11E+01 4.11E+01 4.10E+01 4.13E+01 4.13E+01 4.11E+01 4.12E+01 4.10E+01 4.19E+01
2 1.50E+03 4.15E+01 4.14E+01 4.15E+01 4.13E+01 4.11E+01 4.12E+01 4.14E+01 4.15E+01 4.14E+01 4.16E+01
3 2.00E+03 4.12E+01 4.14E+01 4.21E+01 4.11E+01 4.02E+01 4.02E+01 4.11E+01 4.22E+01 4.14E+01 4.12E+01
4 2.25E+03 4.10E+01 4.16E+01 4.22E+01 4.03E+01 3.43E+01 3.41E+01 4.03E+01 4.22E+01 4.17E+01 4.10E+01
5 2.50E+03 4.10E+01 4.20E+01 4.23E+01 4.12E+01 3.25E+01 3.25E+01 4.12E+01 4.23E+01 4.20E+01 4.10E+01
6 2.75E+03 4.10E+01 4.17E+01 4.22E+01 4.03E+01 3.41E+01 3.43E+01 4.03E+01 4.22E+01 4.16E+01 4.10E+01
7 3.00E+03 4.12E+01 4.14E+01 4.22E+01 4.11E+01 4.02E+01 4.02E+01 4.11E+01 4.21E+01 4.14E+01 4.12E+01
8 3.50E+03 4.16E+01 4.14E+01 4.15E+01 4.14E+01 4.12E+01 4.11E+01 4.13E+01 4.15E+01 4.14E+01 4.15E+01
9 4.00E+03 4.19E+01 4.10E+01 4.12E+01 4.11E+01 4.13E+01 4.13E+01 4.10E+01 4.11E+01 4.11E+01 4.19E+01
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Output_time.dat 

date time_mainstart= 
 20090823                                                                        
   
 105149.921                                                                      
   
 date and time start_eigenstep1= 
 20090823                                                                        
   
 105149.984                                                                      
   
 date and time end_eigenstep1= 
 20090823                                                                        
   
 105302.953                                                                      
   
 date and time start_eigenstep2= 
 20090823                                                                        
   
 105302.953                                                                      
   
 date and time end_eigenstep2= 
 20090823                                                                        
   
 105302.953                                                                      
   
 date and time start_dlahqr= 
 20090823                                                                        
   
 105303.015                                                                      
   
 date and time end_dlahqr= 
 20090823                                                                        
   
 105319.015                                                                      
   
 date time_mainend= 
 20090823                                                                        
   
 105409.328                                                                      
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